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ABSTRACT

The dissertation research investigates estimating of power system static and dynamic

states (e.g. rotor angle, rotor speed, mechanical power, voltage magnitude, voltage phase

angle, mechanical reference point) as well as identification of synchronous generator param-

eters. The research has two focuses:

i Synchronous generator dynamic model states and parameters estimation using real-

time PMU data.

ii Integrate PMU data and conventional measurements to carry out static state estima-

tion.

The first part of the work focuses on Phasor Measurement Unit (PMU) data-based syn-

chronous generator states and parameters estimation. In completed work, PMU data-based

synchronous generator model identification is carried out using Unscented Kalman Filter

(UKF). The identification not only gives the states and parameters related to a synchronous

generator swing dynamics, but also gives the states and parameters related to turbine-

governor and primary and secondary frequency control. PMU measurements of active power

and voltage magnitude, are treated as the inputs to the system while voltage phasor angle,

reactive power and frequency measurements are treated as the outputs. UKF-based esti-

mation can be carried out at real-time. Validation is achieved through event play back to

compare the outputs of the simplified simulation model and the PMU measurements, given

the same input data. Case studies are conducted not only for measurements collected from

a simulation model, but also for a set of real-world PMU data. The research results have

been disseminated in one published article.
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In the second part of the research, new state estimation algorithm is designed for static

state estimation. The algorithm contains a new solving strategy together with simultaneous

bad data detection. The primary challenge in state estimation solvers relates to the inherent

non-linearity and non-convexity of measurement functions which requires using of Interior

Point algorithm with no guarantee for a global optimum solution and higher computational

time. Such inherent non-linearity and non-convexity of measurement functions come from

the nature of power flow equations in power systems.

The second major challenge in static state estimation relates to the bad data detection

algorithm. In traditional algorithms, Largest Normalized Residue Test (LNRT) has been

used to identify bad data in static state estimation. Traditional bad data detection algorithm

only can be applied after state estimation. Therefore, in case of finding any bad datum,

the SE algorithm have to rerun again with eliminating found bad data. Therefore, new

simultaneous and robust algorithm is designed for static state estimation and bad data

identification.

In the second part of the research, Second Order Cone Programming (SOCP) is used to

improve solving technique for power system state estimator. However, the non-convex feasi-

ble constraints in SOCP based estimator forces the use of local solver such as IPM (interior

point method) with no guarantee for quality answers. Therefore, cycle based SOCP relax-

ation is applied to the state estimator and a least square estimation (LSE) based method

is implemented to generate positive semi-definite programming (SDP) cuts. With this ap-

proach we are able to strengthen the state estimator (SE) with SOCP relaxation. Since

SDP relaxation leads the power flow problem to the solution of higher quality, adding SDP

cuts to the SOCP relaxation makes Problems feasible region close to the SDP feasible region

while saving us from computational difficulty associated with SDP solvers. The improved

solver is effective to reduce the feasible region and get rid of unwanted solutions violate cy-

viii
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cle constraints. Different Case studies are carried out to demonstrate the effectiveness and

robustness of the method.

After introducing the new solving technique, a novel co-optimization algorithm for simul-

taneous nonlinear state estimation and bad data detection is introduced in this dissertation.

`1-Norm optimization of the sparse residuals is used as a constraint for the state estimation

problem to make the co-optimization algorithm possible. Numerical case studies demon-

strate more accurate results in SOCP relaxed state estimation, successful implementation

of the algorithm for the simultaneous state estimation and bad data detection, and better

state estimation recovery against single and multiple Gaussian bad data compare to the

traditional LNRT algorithm.

ix
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CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, our society’s life depends on the critical infrastructures such as electric power

systems, telecommunication networks, and water distribution networks. Steady growth in

size, complexity, level of uncertainty, and unpredicted behavior of such systems, make the

designing, monitoring, and controlling of the systems become more and more challenging

every day. All of these critical infrastructures operation relies on the electric power system.

Therefore, secure and relatable operation of power systems are essential for modern societies.

Continuously maintaining the balance between power generation and consumption is the

main objective for the power system operation and control. Traditionally, (SCADA) system

with the low-density sampling rate and nonsynchronous data are used for monitoring and

control of the system. SCADA system consists of an SCADA control center and Remote

Terminal Units (RTU). Traditional SCADA system can only be used for static estimations

because of its limitations which are:

• Data refresh rate is around 2 to 5 seconds.

• Measurement signals are not synchronized.

• It is an offline estimation, and the results aren’t reliable.

After 1965 Northeast blackout (Fig. 1.1), a federal commission was appointed to investi-

gate the reasons which caused the blackout. One of the critical reasons found by the federal

1
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Figure 1.1. Famous 1965 northeast blackout

commission was that the absence of real-time knowledge within the utilities. Consequently,

one of their suggestions to avoid the same problem in the future was establishing a real-time

measurement system [1]. This was the starting point for the utilities to reform SCADA

system and replace it with wide area measurement and control(WAMC) system and using

real-time state estimation algorithm.

1.1.1 Phasor Measurement Unit (PMU)

The Phasor Measurement Unit (PMU) is a device capable of measuring synchronized

time-stamped voltage and current phasor in power system. PMU using synchronized signal

from GPS (global positioning satellite) to create same time phasor measurement sampling

with time-stamped. Time synchronization allows synchronized real-time measurements of

multiple remote measurement points on the grid. The resulting measurement is known as a

synchrophasor. PMUs are considered to be one of the most important measuring devices in

the future of power systems [2].

2
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Fig. 1.2 shows the block diagram of hardware in a PMU device [3]. Anti-aliasing filter has

been used to filter out frequencies above Nyquist rate from the input waveform. The GPS

one pulse per second is converted into a sequence of high-speed timing pulses used in the

waveform sampling by the phase locked oscillator. The microprocessor has the responsibility

to execute the DFT phasor calculations. Finally, the phasor is time-stamped and uploaded

to a collection device known as a data concentrator [3].

Figure 1.2. Hardware block diagram of a PMU

PMU has a wide range of applications in power system. Some of its applications are as

follows:

• Wide area visualization and monitoring

• Real-time angle and frequency monitoring

• Inter-area oscillation detection and analysis

• Proximity of voltage stability

• Online state estimation

3
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• Fast frequency regulation

• Transmission fault location estimation

• Parameters estimation and dynamic model validation

In summary, the benefit of PMU in power system is to improve the monitoring and control

of the grid by providing a real-time accurate snapshot of the system state at any time. PMU

high sampling rate which can be up to 60 samples per second, enables dynamic phenomena to

be observed and thus online state estimation, contingency analysis, and load flow algorithms

can be applied to determine states of the power system at any time. Determining state

variables of the system can lead to understanding the current environment and being able

to accurately anticipate future problems and to be able to implement effective preventive

actions. Furthermore, a precise snapshot of the system which provided by one microsecond

accuracy of GPS signal highly improves post-disturbance analysis which helps to analyze the

vulnerability of the system for any future incidents.

1.1.2 Wide Area Measurement and Control

In recent years, phasor measurement units (PMUs) equipped with GPS antennas have

been widely used to monitor different points of power grids. PMU allows 6-60 Hz mea-

surement data to be sent to the control center. Therefore, a large quantity of information

obtained from power system can be employed for system monitoring and control. Wide

area measurement system consists of PMUs, advance communication technology, data man-

agement tools, and operational infrastructure that used to monitor and control of large,

complicated power grids. Fig. 1.3 shows the WAMC structure [4]. As it can be seen, PMUs

measure the voltage and current phasor at different points of the system and send the data

to the control center by using standard protocols such as IEEE C37-118. The control center

is equipped with the database software which can save received data. After data process-

4
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ing procedure gathered data would be used in phasor data applications such as real-time

monitoring, state estimation, on-line power flow and etc.

Figure 1.3. Wide area measurement and control system using PMU

1.2 State and Parameter Estimation in Power System

1.2.1 State Estimation in Power System

As it has been discussed, it is critical for power grid operators to have the knowledge

about the state of the system at any time in order to grantee reliable and efficient operation

of the system. Therefore, state estimation techniques were developed in the 1970s. At that

time, traditional SCADA system only had the capability of low sampling rate measurements

(from seconds to minutes). Therefore, only centralized steady state system model was used

for implementing state estimation. That is why power system state estimation is treated as

static state estimates. In traditional SCADA systems, RTUs are gathering the data from

widely spread locations within the power system which means the data have to be sent

from a significant distance to the data center. Therefore, communication problems and data

latencies are important problems for traditional SCADA systems. Furthermore, because the

5
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time-stamped is not accurate for RTU measured data and it is independent of RTU locations,

it can introduce significant biases in state estimation [5].

Introducing PMUs with GPS common reference signal enables synchronized phasor of

voltages and currents to be measured with high-density sampling rate up to 60 samples per

second, which makes the dynamic model state estimation possible and thus, enhances power

system situation awareness. The objectives of PMU based state estimation are:

• To give accurate states of the power system by filtering, smoothing and bad data

elimination from WAMC real-time measurement data.

• To provide a consistent power system security assessment by using online power flow,

online contingency analysis, and online frequency and voltage monitoring and control

algorithms.

• to obtain the best estimation for states and parameters of the dynamic model of the

system.

The power system states are phasor voltages of the buses and their complex power pha-

sor that can be used to determine all the other parameters of the system. Therefore, sy-

chronophasor measurements from PMU devices which contain voltages and currents phasor

of specific nodes of the grid are used as the measurement inputs of the state estimator. Also,

system configuration provided by topological processor together with the network param-

eters, is used as other input of state estimator. The estimator uses those inputs to run

dynamic state estimation algorithm in order to determine all of the states and unknown

parameters of dynamic model as well as the processing results of measurement errors. Fig.

1.4 shows the block diagram of the power system state estimation procedure.

PMU online data can be used for states estimation of the power system as well as param-

eter estimation of dynamic models. In the better words, dynamic model state and parameter

6
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Figure 1.4. PMU-based power system state estimation procedure

estimation can be used to find an equivalent low-order dynamic model for any subsystem of

the power grid. Fig. 1.5 shows dynamic model reducing procedures.

There are at least two major systematic methods for parameter estimation: least squares

estimation (LSE) and Kalman filter-based estimation. A window of data is required if the

LSE method is implementing for the parameter estimation of the dynamic model of the

system. On the other hand, Kalman filter-based estimation is carried out at each time

step and thus it can be used for online applications. This is also one of the reasons why

PMU-based system identification opts for Kalman filter estimation [6–10].

1.2.2 Parameter Estimation in Power System

Provided values for the parameters of the generator by its manufacturers could change

over the years due to the factors such as aging and repairs. The difference between provided

generators parameters values with their real values in practice could create a serious deviation

between the dynamic response of the simulation studies compares to the actual dynamic

7
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Figure 1.5. PMU-Based online states and parameters estimation for reducing the order of
the dynamic model

response of the generator to an event. The WSCC model validation guidelines call for

periodic verification of the synchronous machine key parameters. These parameters include

machines reactances, time constants, inertia, and stator resistance, among other parameters.

Moreover, unit-specific dynamic data should be filed in order to comply with NERC MOD-

013 standard. This standard covers power generating systems inclusive of generators (inertia

constant, damping coefficient, direct and quadrature axes reactances and time constants),

excitation systems, voltage regulators, turbine-governor systems, power system stabilizers.

Currently, the generating unit is brought off-line and is subject to tests in order to provide

the data required by NERC [11]. Therefore, the research work of this dissertation has a

practical application in the real-world system. Our proposed method in this research helps

companies to provide generator data required by NERC MOD-013 while the generator is

online.

8
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1.3 Statement of the Problem

The purpose of this dissertation is to investigate both static and dynamic state estima-

tion in power system in order to produce efficient computing methods for conducting state

estimation and online parameter identification. In particular, the dissertation goals are:

• To investigate the benefits of PMU data and wide area measurement in state estimation

• To develop a new algorithm for online state and parameter estimation of the syn-

chronous generator. In parameter estimation, not only electromechanical dynamics

related states and parameters but also turbine-governor dynamics, primary and sec-

ondary frequency control parameters will be estimated.

• To implement dynamic state and parameter estimation algorithm for the real-world

PMU data in order to demonstrate the feasibility of the proposed UKF estimation

approach for system identification using real-world PMU data.

• To explore new algorithm for static state estimation solver to develop faster and more

reliable solving technique. Traditionally Gauss-Newton algorithm is used to solve state

estimation problem. The algorithm can only find local optimization point and needs

significant computation time due to the non-convexity of the problem.

• To investigate new robust state estimation algorithm for simultaneous state estimation

and bad data identification.

9
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1.4 Outline of the Dissertation

The dissertation is organized as follows:

• Chapter 1 introduces the importance of state estimation and the effect of PMU de-

vice and wide area measurement system on both static and dynamic state estimation

algorithms

• Chapter 2 presents a detailed literature survey on the various problems tackled in this

dissertation. The chapter highlights the limitations and assumptions of such research

and points out to specific objectives to be attained by this dissertation providing an

incremental contribution to the established research in the literature.

• Proposed algorithm for dynamic state estimation and parameter identification of syn-

chronous generator is introduced in chapter 3. The chapter introduces Unscented

Kalman Filter algorithm and its implementation for dynamic state estimation and pa-

rameter identification in sections 3.3and 3.4 respectively. Also, implementation of the

proposed algorithm for the real-world PMU data obtained from anonymous busbar of

the MISO system have been shown in section 3.5.3.

• Chapter 4 presents state estimation standard formulation and its related relaxations.

The relation between the feasible region of each relaxation is introduced, and new

cycle based relaxation is investigated in this chapter. Section 4.6 presents joint co-

optimization algorithm for simultaneous state estimation and bad data identification.

New convex solver for nonlinear state estimation is introduced in section 4.7 with using

LSE based SDP cuts for SOCP relaxation of SE problem. Finally, case studies in this

chapter show the effectiveness and robustness of joint co-optimization algorithm.

10
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• Chapter 5 concludes the dissertation with the main results drawn from the research

and proposes future works by extending the research of both static and dynamic state

estimation to improve proposed algorithms.

11
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CHAPTER 2

REVIEW OF RELEVANT LITERATURE AND RESEARCH

2.1 Static State Estimation

Static state estimation (SSE) is the algorithm which uses measurement data from a

snapshot of the power system to produce a reliable estimation of the transmission line flow

and voltage of the buses. Since measurement data usually contains some errors and noises,

SSE should be able to identify those errors and uncertainties in its algorithm. Measurement

errors come from a form of the metering communication error, uncertainties in some of

the parameters of the power system, bad data due to the noises, transients, and metering

accuracy, and topology error related to the structure of the power system in a specific

snapshot. Therefore, SSE algorithm consists of three steps: 1) mathematic formulation of

the measurement function with respect to the topology of the network and measurement

variables; 2) optimization algorithm to find state vector; 3) bad data detection and topology

error to ensure the reliability of the estimation. One of the most known SSE algorithms is

least square estimation (LSE). LSE will be discussed in the following section.

2.1.1 Least Square Estimation

LSE minimizes the sum of squares of the difference between measured and calculated

values. The least squares criterion is a computationally convenient measure of fit. It corre-

sponds to maximum likelihood estimation when the noise is normally distributed with equal

variances [12]. Consider a linear system model represented by function f(x, β) where x is

12
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system inputs and β is the unknown parameters to be estimated. Assume a set of m data

points (x1, y1), (x2, y2), ..., (xm, ym) for n unknown parameters are available from measure-

ments which m > n. Based on system model we will have:

y = f(x, β) + noise (2.1)

Therefore, system error and the sum of the squares of the errors can be written as 2.2

and 2.3 respectively.

ri = yi − f(xi, β) for (i = 1, 2, ...,m.) (2.2)

S =
m∑
i=1

r2
i (2.3)

LSE objective is to minimize S and it happens when the gradient is zero. Also, since the

system is linear ( ∂ri
∂βj

= −Xij), the normal equation for solving LSE problem can be written

as 2.4.

m∑
i=1

n∑
k=1

XijXikβ̂k =
m∑
i=1

Xijyi for (j = 1, 2, ...,m) (2.4)

Finally, if we use matrix format, equation 2.4 can be rearranged to 2.5.

(XTX)β̂ = XTy (2.5)
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In nonlinear systems, the derivatives ∂ri
∂βj

are functions of both inputs xi and the pa-

rameters βi. So the gradient equation does not have a closed solution. Therefore, iterative

method and Taylor’s expansion have to be used to solve the estimation problem. By assum-

ing Jacobian matrix as function of constants, the independent variable, and the parameters

and by using Taylor expansion, the derivatives of error will be ∂ri
∂βj

= −Jij. Consequently,

the normal equation in matrix form can be written as 2.6.

(JTJ)∆β = JT∆y (2.6)

2.1.2 Least Absolute Value Estimation

LAV minimizes the sum of absolute values of the difference between measured and cal-

culated values. LAV corresponds to maximum likelihood estimation when the error has the 

Laplace distribution. Consider a linear system model represented by function f(x, β), where x 

is system inputs and β is the unknown parameters to be estimated. Assume a set of m data 

points (x1, y1), (x2, y2), ..., (xm, ym) for n unknown parameters are available from 

measurements which m > n. Based on system model we will have:

y = f(x, β) + noise (2.7)

Therefore, system error and the sum of the absolute values of the errors can be written

as 2.8 and 2.9 respectively.

ri = yi − f(xi, β) for (i = 1, 2, ...,m.) (2.8)

S =
m∑
i=1

|ri| (2.9)
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Unlike least square algorithm, the least absolute value can not be solved with an analytical

solving method. Therefore, an iterative method requires for solving LAV problems. Also

since the cost function of LAV contains absolute function, it’s not a continuous function and

cannot be solved by linear programming. However, it’s well known that we can solve the

problem using linear optimization method by introducing two positively bounded variables

to the cost function of LAV. Therefore, the problem can be represented as follows:

min
m∑

i = 1

(ri + si) (2.10)

s.t. yi − f(xi, β) + ri − bi = 0 (2.11)

ri ≥ 0, bi ≥ 0, for i = 1, ...,m (2.12)

Introducing above constraints force the minimization problem to become equal to the cost

function in 2.9. Since this version of the problem does not have the absolute value function,

it can be solved by any linear programming package.

2.2 Dynamic State Estimation

The dynamic state estimation (DSE) relies on the knowledge of the previous step state

values in order to determine the current state of the system. Therefore, unlike static state

estimation which belongs to the maximum likelihood estimation, dynamic state estimation

is an example of Bayesian estimation where recursive algorithms such as Kalman Filtering

are used to estimate states of the system. The accuracy of DSE depends on the sampling

rate of the measurements. the low sampling rate of the traditional SCADA system was not

allowed dynamic of the system to be captured and thus, DSE could not be implemented
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based on those measurement data. Introducing PMU with the high sampling rate between

30-60 Hz, allowed Kalman Filter algorithm to be implemented for dynamic state estimation.

Next section investigates Kalman filter estimation algorithm for dynamic state estimation

in power system.

2.2.1 Kalman Filter and Extended Kalman Filter

One of the most widely used algorithm for dynamic state estimation is Kalman Filter.

Kalman Filter is a recursive algorithm that uses prediction-correction steps process to esti-

mate unknown states and parameters of the system. At each time step, given the previous

step’s information, Kalman filter estimation will provide the state information of the cur-

rent step and the relating covariance of the state. Usually, a prediction step estimates the

information based on the dynamic model only, and a correction step corrects the informa-

tion based on the current step’s measurements. Kalman Filter has some advantages over

LSE [13]:

• The Kalman filter equations provide an extremely convenient procedure for digital

computer implementation.

• Kalman Filter is posed in a general framework that one can easily analyze the behavior

of the estimates in this framework.

• Kalman Filter has found its greatest application to nonlinear systems.

Kalman Filter (KF) was originally implemented for linear systems, but by using the

Extended KF (EKF) algorithm, it can be applied to nonlinear systems as well. If the level

of nonlinearity is not harsh, the performance of the EKF is acceptable because of its simple

structure as well as its popularity. Assume state model of the system in k time step can be

shown as 2.14.
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xk = Akxk−1 + qk−1 (2.13)

yk = Hkxk + rk (2.14)

where q and r are the procedure noise and measurement noise respectively. In prediction

step, EKF calculates an estimation of the states at time step k and its relevant covariances

from previous step’s measurements. 2.16 shows the prediction step equations.

x̂−k = Akx̂k−1 (2.15)

P−k = Ak−1Pk−1A
T
k−1 +Qk−1 (2.16)

In correction step, EKF updates predictions by observing measurements output and

calculating Kalman Filter gain. 2.19 shows the equations for updating estimation results.

Kk = P−k H
T
x (x̂−k .k)[Hx(x̂

−
k .k)P−k H

T
x (x̂−k .k) +Rk]

−1 (2.17)

x̂k = x̂−k +Kk(yk − h(x̂−k .k)) (2.18)

Pk = P−k−1 +KkHx(x̂
−
k .k)P−k (2.19)

2.2.2 Unscented Kalman Filter (UKF)

EKF and LSE have some limitations which can affect state estimation results. The most

important limitations for LSE and EKF are [13]:

• LSE and EKF use the first order Taylors expansion for linearizing the system. In some

cases, the accuracy of the results are not satisfying.
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• In both algorithms, the Jacobian matrices need to exist so that the transformation can

be applied. Therefore, Jacobian Matrix singularity may cause convergence problem.

• In many cases, the calculation of Jacobian matrices can be a very difficult and complex

process.

Unscented Kalman Filter (UKF) overcomes the limitations of LSE and EKF algorithms.

UKF is a Monte-Carlo simulation method. In the UKF procedure, the probability distribu-

tion is approximated by a set of sigma points. the dynamic process of these sigma points will

be computed based on the nonlinear estimation model. Probability distribution information

of the dynamic process will then be evaluated. Fig. 2.1 shows the difference between actual,

EKF and UKF sampling procedure [14]. Detail investigation regarding UKF algorithm for

state estimation will be discussed in upcoming chapters.

Figure 2.1. Example of the UT for mean and covariance propagation. a) actual, b) first-order
linearization(EKF), c) UT.
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2.3 Scope of the Work

The advent of PMU equipped with GPS antenna provides voltage-current phasors and

frequency with a high-density sampling rate up to 60 Hz. These phasor measurements,

transmitted with the time stamps, can help control systems to have an accurate picture of

the state of the power system. Using PMU has opened new possibilities for complicated

state estimation algorithms with more accurate results. Therefore, in rest of our research,

we are focusing on the developing of a new algorithm for dynamic and static state estimation

as well as parameter identification of synchronous generator in order to find better solutions

for reliable and efficient real-time operation of power system.

2.3.1 PMU-based Dynamic States and Parameters Estimation

One of the important applications of PMU in power system operation comes from dy-

namic model parameters and state estimation. Because dynamic estimation deals with the

dynamic oscillations in a range of 0.1 to 3 Hz, traditional SCADA measurement system

with low sampling rate could not be used in dynamic states estimation and synchronous

generator parameters identification. Having PMU’s high sampling rate voltage and current

measurements, make it possible to capture dynamic states of the system and estimate all

the unknown parameters needed for reliable and efficient operations of the power system.

Besides, PMU data can make the dynamic model calculation much easier by simplifying high

orders dynamic model of any unknown subsystem.

2.3.1.1 Literature Review

Synchronous generator states and parameters estimation has been investigated in the

literature. Based on the scope of the estimation, some only investigate electrical state esti-

mation (e.g. rotor angle and rotor speed) [15, 16], while others estimate both system states
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and generator parameters [17–20]. Based on estimation methods, there are at least two

major systematic methods for parameter estimation: least squares estimation (LSE) [21–23]

and Kalman filter estimation [6–10]. In order to use LSE for parameter estimation of the

dynamic model of the system, a window of data is required. On the other hand, Kalman

filter can be carried out for each time step. Thus Kalman filter algorithm can be used for

online estimation. This is also one of the reasons why PMU based system identification opts

for Kalman filter estimation [6–10].

Kalman Filter was originally proposed for the linear systems. Extended Kalman Fil-

ter (EKF) is developed to implement on nonlinear systems by using linearization tech-

niques. EKF was first applied by PNNL researchers in dynamic model identification via

PMU data [6, 19, 20]. [19] focuses on parameter calibration for a simple generator dynamic

model. [20] presents parameter calibration for a multi-machine power system under varying

fault locations, parameter errors and measurement noises. In [6], parameter calibration for

a more complicated generator model consisting of electromechanical dynamics, electromag-

netic dynamics, exciter dynamics, voltage control blocks and power system stabilizer (PSS)

was presented. EKF-based simple generator model estimation was also carried out in [7, 8].

Limitations of EKF method has also been investigated in [7].

In the UKF procedure, the probability distribution is approximated by a set of sigma

points. the dynamic process of these sigma points will be computed based on the nonlinear

estimation model. Probability distribution information of the dynamic process will then be

evaluated. UKF overcomes the limitation of the linearization process required by the EKF

method with the cost of more computing effort. In [9], UKF is applied for state estimation.

Accuracy and convergence for both EKF and UKF are compared. Both papers focus on

state estimation only, and parameter estimation was not discussed. In [10], UKF is applied

to estimate the following parameters Eq, X
′
d and H along with states. A comparison of

various Kalman filter methods is documented in [24].
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2.3.1.2 Identification of the Problem

Traditionally LSE was used to estimate states and parameters of synchronous generators.

Since generator identification algorithms deal with the non-linear equations, iteration based

linearization using Taylor’s expansion is used for states and parameter estimations. The

most important problem associated with the usage of LSE based estimation are:

• LSE estimation needs a window of data for estimation.

• System linearization using Taylor’s expansion can affect the accuracy of the results in

some cases.

• LSE needs invertible Jacobian matrix to exist. Therefore, Jacobian Matrix’s singularity

may cause Convergence problem.

• In many cases, the calculation of Jacobian matrices can be a very difficult process

In order to address some of the issues associated with LSE, the Kalman filter algorithm

is introduced in literature. Kalman Filter was originally proposed for the linear systems.

Thus, Extended Kalman Filter (EKF) is developed to implement on nonlinear systems by

using linearization techniques. The advantage of EKF over LSE is that EKF equations pro-

vide an extremely convenient procedure for digital computer implementation and it has a

great application for nonlinear systems [13]. However, EKF still needs Jacobian matrix and

linearization techniques and thus it is limited by the drawbacks associated with those tech-

niques. Using UKF algorithm overcomes linearization limitations and increase the accuracy

of the estimation.

Other problem which can be identified in the literature, comes from the lack of frequency

system parameter identification and its effect on the on-line estimation of synchronous gen-

erator model. Since frequency control system is responsible for responding to the frequency

dynamics, it has a direct effect on the accuracy of generator’s dynamic model. Therefore,
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neglecting frequency control system will introduce process error to the estimation. Finally,

implementing UKF algorithm on a real-world PMU data will evaluate the effectiveness of the

method and develops a new algorithm to simplify high-order dynamic model of the real-world

synchronous generator to the low order classic generator model.

2.3.1.3 Approach

The synchronous generator model identified in the aforementioned papers focuses on the

generator electromechanical, electromagnetic and excitation system only. For example, a

4th order transient generator estimation model is assumed in [24]; a subtransient generator

estimation model is adopted in [6].

In this dissertation, UKF is implemented to estimate dynamic states and parameters of a

low-order synchronous generator model with both primary and secondary frequency control

systems. Both simulation data and real-world PMU data are used for case studies. In this

research, various techniques are implemented to improve UKF algorithm for this application.

The techniques include: (i) parameter conversion to increase parameter detection sensitivity

from the measurements; (ii) measurements interpolating to have a higher sampling rate to

improve UKF convergence. The case studies demonstrate the feasibility of the proposed

UKF estimation approach for system identification using PMU data. Through the proposed

estimation method, a complex generator model can be emulated using a low-order generator

with frequency controls. The case study on the real-world PMU data demonstrates the

capability of the proposed UKF on identifying an equivalent generator. Therefore, This

part of our research successfully completed first three tasks introduced in dynamic states

and parameters estimations research. The results of this part of research presented in one

transaction paper [25].
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2.3.2 AC Network Static State Estimation

Static state estimation was first introduced for transmission systems under the name

’power system state estimation (PSSE)’ and traditionally used low rate SCADA measure-

ments [26–28]. The main idea of static state estimation is to estimate the most possible states

(generally voltage magnitudes and angles of buses) of the systems based on the limited mea-

surements. The main challenge of the PSSE is the limitation of number of measurements

in power system. The objective of this part of research is to integrate PMU data with

traditional measurements and develop enhanced state estimation.

2.3.2.1 Literature Review

Reliable operation and control of power system depend on the results of state estimation.

State estimation problem have been reported in a large number of research works in litera-

tures [15] and [29–52]. Corrupted data usually exist in power system measurements due to

limited measurement sensor’s accuracy, communication system problems, and cyber attacks.

Therefore, state estimator has been equipped with bad data identification algorithms in or-

der to detect such corrupted data and guarantee the accuracy of state estimation. Classic

bad data detection algorithms such as Largest Normalized Residue Test (LNRT) have been

reported in the literature for identifying bad data, [53–55].

LNRT test relies on the state estimation residuals and thus can only be implemented

after running state estimation. After any bad datum been detected, state estimation has to

be rerun by eliminating that bad datum. Hence, the efficiency and computational time of

the LNRT algorithm becomes a major concern.

State estimation problems rely on the set of non-convex measurement functions that

come from its corresponding power flow equations. Therefore, non-convex state estimation

accuracy can be a very challenging problem, especially for large-scale power systems with
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thousands of buses and generators. In order to address this challenge, traditionally iterative 

linearization were used in literature. However, it is clear that such linearization will affect 

the accuracy of the algorithm and cannot guarantee the global optimality of the solutions. 

Another solution for the non-convexity problem in SE is the usage of a local optimal solver 

such as interior point method (IPM) and Newton’s algorithm. The final solution of these type 

of algorithms, are sensitive to the initial guesses and therefore they subject to stuck in local 

optimal solution and usually cannot reach to the global one.

In recent years, convex relaxation approach is becoming widely popular for solving non-

convex power flow optimization. The most famous convex relaxation methods are semidef-

inite programming relaxation (SDP) and second order conic programming (SOCP). In [56] 

new SDP state estimator was introduced to overcome inherent non-convexity of state esti-

mation. Although SDP solver can produce quality results and small duality gap, they still 

have high computational time limitation, especially for large-scale systems. On the other 

hand, SOCP can be used to reformulate power flow equation and state estimation problem as 

it explored in [57–59].

In particular in [59], state estimation problem was reformulated by using second order

conic programming method. However, SOCP formulation for SE problem still contains two

non-convex feasibility constraints and Thus, IPM (interior point Method) solver was used to

find local answers for the optimization. Therefore, despite of its effectiveness for IEEE test

cases, it still cannot guarantee the global optimality of the solution. Consequently, [60]and

[61] suggested strengthening SOCP relaxation by separating its optimal solution from SDP

Feasible region.

2.3.2.2 Identification of the Problem

The main problem in static state estimation relates to the bad data detection algorithm.

Corrupted data (a.k.a. bad data) can affect the result of SE. Thus, bad data identification is
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necessary for state estimation in power system. Largest normalized residue algorithm (LNR)

have widely been used for bad data identification in literature. LNR algorithm relies on LSE

residuals and therefore, can be implemented only after running SE. So, for any bad data

detection, it is needed to rerun the SE again with discarding corrupted datum [62]. Also, in

recent years, the risk of cyber attacks have been increased significantly. The research shows

that cyber attacks can be unidentified by the traditional bad data detection schemes in case

the attack would be able to cause multiple corrupted measurements. Consequently, new

co-optimization algorithm has to be designed for state estimation and bad data detection.

Traditionally, non-convex Gauss-Newton algorithm has been used to solve SE iteratively.

However, Newton method is a local solver with no guarantee for a global solution. Intro-

ducing co-optimization for state estimation and bad data detection, not only changes the

objective function of the optimization but also changes the SE optimization structure to be

constrained. Thus, a non-convex solver may stick in a local solution. The main problem in

state estimation solvers relates to the inherent non-linearity and non-convexity of measure-

ment functions which comes from the nature of power flow equation in power systems. High

accuracy (less than 1% noise) in PMU-based measurement data simplifies the usage of the

convex algorithm for the static state estimation.

In our research work for static state estimation, SOCP programming is used to improve

solving technique for power system state estimator with using linear measurement functions.

However, the non-convex feasible constraints in such estimator forced the use of local solver

such as IPM (interior point method) with no guarantee for global answers. Therefore, cycle

based SOCP relaxation applied to the state estimator and a least square estimation (LSE)

based method is implemented to generate semidefinite programming (SDP) cuts in order to

strengthen the state estimator (SE) with SOCP relaxation. Since SDP relaxation provides a

tighter bound for power flow problem , adding SDP cuts to the SOCP relaxation, makes the

Problems feasible region close to the SDP feasible region while saving us from computational
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difficulty associated with SDP solvers. The improved solver is effective to reduce the feasible

region and get rid of unwanted solutions violated cycle constraints. Case studies are carried

out to demonstrate the effectiveness and robustness of the method.

2.3.2.3 Approach

A joint co-optimization algorithm for nonlinear state estimation and bad data detection

is introduced in this dissertation. The proposed algorithm uses the sparse matrix charac-

teristic to identify bad data detection. However, since sparse matrix based co-optimization

is implemented for linear system state estimation in literature, our recently developed LSE

based SDP cuts algorithm have been implemented for state estimation with SOCP relaxation

to make the joint co-optimization possible for nonlinear state estimation.

Convex relaxation approach, especially second order conic programming (SOCP), draw

more research interests in recent years. In this dissertation, SOCP programming was used

to build power system state estimator with linear measurement functions. However, the

non-convex feasible constraints in estimator with linear measurement function, forced the

use of a local solver such as IPM (interior point method) with no guarantee for a global

solution. In order to improve static estate estimation technique, cycle based SOCP relaxation

applied to the state estimator and a least square estimation (LSE) based method from [63]

is implemented to generate semidefinite programming (SDP) cuts in order to strengthen the

state estimator (SE) with SOCP relaxation. Since SDP relaxation provides a tighter bound

for power flow problem, adding SDP cuts to the SOCP relaxation, makes the Problems

feasible region close to the SDP feasible region while saving us from computational difficulty

associated with SDP solvers. The implemented method is effective to reduce the feasible

region and get rid of unwanted solutions violate cycle constraints.

Numerical case studies demonstrate more accurate results in SOCP relaxed state estima-

tion, successful implementation of the algorithm for the simultaneous state estimation and

26



www.manaraa.com

bad data detection and better state estimation recovery against single and multiple Gaussian

bad data compare to the traditional LNRT algorithm.

2.4 Contribution of the Dissertation

This dissertation investigates both static and dynamic state estimation algorithms using

PMU data. Specifically, the contributions of the dissertation include:

• Not only electromechanical dynamics related states and parameters, but also turbine-

governor dynamics, primary and secondary frequency control parameters will be es-

timated. Estimation related to frequency control based on PMU data has not been

seen in the literature. This dissertation will address this topic for the first time. Par-

ticularly, we will estimate the following parameters and states: inertia constant H,

damping factor D, internal voltage Eq, transient reactance x′d, mechanical power input

Pm, Droop regulation R, turbine-governor time constant Tr, and secondary frequency

control integrator gain Ki.

• Event playback method [6] is used in this paper to validate the identified low-order

model. For validation, estimated parameters will be used to create a dynamic simula-

tion model. Then event playback will be used to inject the same inputs to the dynamic

simulation model. The output signals from the simulation will be compared with the

PMU measurements.

• Identify the issues facing the application estimation techniques on real PMU data and

real-world PMU data-based model identification will be implemented to demonstrate

the effectiveness of the proposed estimation model.
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• Introducing a new formulation of simultaneous AC network state estimation and bad

data identification. The constrained optimization problem is further relaxed using

SOCP relaxation technique.

• Implementing an LSE based SDP cutting plane method to solve the SOCP relaxed

problem. This solver leads to more accurate results of state estimation as well as bad

data identification.
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CHAPTER 3

DYNAMIC STATE ESTIMATION AND MODEL IDENTIFICATION

3.1 Note to the Reader

Portions of these results have been previously published (as a 1st author in [25]). The

results are utilized with permission of the publisher.

3.2 Introduction

Traditional SCADA system can not capture the system dynamics. In recent years,

WAMC (wide Area Measurement And Control) system using phasor measurement units

(PMUs) equipped with GPS antennas have been largely used. The advent of phasor mea-

surement units (PMUs) equipped with GPS antenna provides voltage-current phasors and

frequency with a high-density sampling rate up to 60 Hz. These phasor measurements trans-

mitted with time stamps can help control systems have an accurate picture of the power

system. States and dynamic model estimation are necessary for a safe and reliable operation

of power system.

The goal of this section of the dissertation is to apply UKF for parameter and state

estimation for a synchronous generator model consisting of electromechanical dynamics and

frequency control. Contributions of this part of research are summarized in the following

paragraphs.

• Not only electromechanical dynamics related states and parameters, but also turbine-

governor dynamics, primary and secondary frequency control parameters will be es-
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timated. Estimation related to frequency control based on PMU data has not been

seen in the literature. Particularly, we will estimate the following parameters and

states: inertia constant H, damping factor D, internal voltage Eq, transient reactance

x′d, mechanical power input Pm, Droop regulation R, turbine-governor time constant

Tr, and secondary frequency control integrator gain Ki. Some parameters are difficult

to estimate due to nonlinearity. Parameters conversion is adopted in this research in

order to make estimation easier.

• Event playback method [6] will be used to validate the identified low-order model. For

validation, estimated parameters will be used to create a dynamic simulation model.

Then event playback will be used to inject the same inputs to the dynamic simula-

tion model. The output signals from the simulation will be compared with the PMU

measurements.

• Lastly, real-world PMU data model identification will be carried out to identified equiv-

alent dynamic model of the unknown part of the power grid in order to simplify the

complexity order of dynamic model of the power system network.

3.3 Basic Algorithm of UKF

Characterizing the output of the nonlinear system faced with a stochastic input is very

difficult. In order to solve the problem, the system can be linearized first, and the stochastic

output of the linearized model is used then. This approximation works in some cases, but

inaccurate estimation has been reported as well. The Unscented Transformation (UT) is

a nonlinear transform that provides a good characterization of the output of a nonlinear

system subject to a stochastic input. Considering mx as the mean and px as the covariance

of n × 1 stochastic vector x, UT approaches the approximated mean and covariance of the

output of a known nonlinear function y = f(x). This can be done by defining a set of
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sigma points σix i = 0, 1, 2, ..., N with the same mean and covariance as vector x, then

transforming sigma points by function y will lead to a set of projected sigma points, σiy.

Weighted sample mean and covariance of the σiy can be considered as a good approximation

of mean and covariance of nonlinear function y.

Kalman Filter (KF) was originally implemented for linear systems, but using the Ex-

tended KF (EKF) it has been applied to nonlinear systems as well. If the level of nonlinear-

ity is not harsh, the performance of the EKF is acceptable because of its simple structure

as well as popularity. EKF has been used as one of the most interesting nonlinear state

estimators so far. Combining UT and KF will result in Unscented Kalman Filter (UKF)

which is mostly the discrete KF in which the mean value and covariance updates are derived

by UT approach. Discrete KF uses the first two statistical moments and updates them with

time. A brief summary of the UKF is included below.

A continuous nonlinear dynamic system is represented by the following equations.


ẋ(t) = f [x(t), u(t), v(t)]

y(t) = h[x(t), u(t), v(t)] + w(t)

(3.1)

where, x(t) is the vector of state variables, y(t) is the vector of output variables, u(t) is

the vector of input variables, v(t) is the non-additive process noise, and ω(t) is additive

measurement noise. Considering the time step of ∆t, (3.1) can be written as (3.2) in the

discrete time domain:


xk = xk−1 + f [xk−1, uk−1, vk−1]∆t

= f [xk−1, uk−1, vk−1]

yk = h[xk, uk, vk] + wk

(3.2)
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The state xk is considered as a random variable vector with an estimated mean value of

x̂k and an estimated covariance of Pxk . Vector ψk is considered as a set of unknown model

parameters. For simplification, ψk can also be treated as states. Then new state vector is

Xk =

[
xk

T ψk
T

]T
. The state-space model in (3.2) is reformulated as:


Xk = f [Xk−1, uk−1, vk−1]

yk = h[Xk, uk, vk] + wk

(3.3)

Kalman filter is a recursive estimation algorithm. At each time step, given the previous

step’s information, such as the mean of the state X̂k−1, the covariance of the state PXk−1
,

Kalman filter estimation will provide the state information of the current step, i.e., the mean

of the state X̂k and the covariance of the state PXk
. Usually, a prediction step estimates the

information based on the dynamic model only, and a correction step corrects the information

based on the current step’s measurements. There are several references for UKF algorithm

in literatures. For rest of this section, [64] are used as the reference for all UKF algorithm’s

equations.

Unscented Kalman filter (UKF) is a Monte-Carlo simulation method. A set of sigma

points will be generated based on the given information: mean and covariance of the states.

Sigma points vectors will capture the mean and covariance of distribution of the state variable

X.

The set of sigma points is denoted by χi and their mean value represented by X̂ while

their covariance represented by PX . For n number of state variables, a set of 2n + 1 points

are generated based on the columns of matrix
√

(n+ λ)Px. As shown below, at k − 1 step,

2n + 1 sigma points (vectors) are generated. Based on the information of the sigma points

of the next step, the mean and the covariance of the states will be computed.
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

χ0
k−1 = X̂k−1

χik−1 = X̂k−1 +

[√
(n+ λ)PXk−1

]
i

, i = 1, ..., n

χi+nk−1 = X̂k−1 −
[√

(n+ λ)PXk−1

]
i+n

, i = 1, ...., n

(3.4)

where λ is a scaling parameter (λ = α2(n+ κ)− n), α and κ are positive constants.

In the prediction step, prediction of the next step information will be carried out for all

these sigma points. UKF will use weights to calculate the predicted mean and covariance.

The associated weights can be written as below:



Wm0 = λ
(n+λ)

Wc0 = λ
(n+λ)

+ (1− α2 + β)

Wmi
= 1

2(n+λ)
, i = 1, ..., 2n

Wci = 1
2(n+λ)

, i = 1, ..., 2n

(3.5)

where β is a positive constant, Wmi
is used to compute the mean value, and Wci is used to

compute the covariance matrix. α, κ and β are the Kalman Filter parameters which can be

used to tune the filter.

Scaling parameter β is used to incorporate prior knowledge of the distribution of x(k) and

for Gaussian distributions β = 2 is optimal [65]. The scaling parameter α is a positive value

used for an arbitrary small number to a minimum of higher order effects. For choosing α,

two laws have to be taken into accounts. First, for all choices of α, the predicted covariance

must be defined as a positive semidefinite. Second, The order of accuracy must be preserved

for both the mean and covariance [66]. See [65] and [66] for more detail insight regarding

the effect of scaling parameter α on UKF tuning.
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κ is a scaling factor that controls how far away from the mean we want the points to

be. A larger kappa will choose points further away from the mean, and a smaller kappa will

choose points nearer the mean. Based on (3.5) it can also be seen that when κ gets larger not

only the sampled sigma points goes further away from the mean, but also the weight of those

samples gets smaller. In the other word, by choosing larger κ samples are chosen further and

further away from the mean with less weight assigned to those samples. Therefore, choosing

appropriate κ will reduce higher order errors of Tylor’s series for predicting the mean and

covariance of the states of the system.

It is shown in [67] and [68], that if x(k) is Gaussian, it is more appropriate to choose κ in

a way that n+ κ = 3. However, if the distribution of x(k) is different, then we have to use a

different approach for choosing κ. A detailed discussion regarding UKF parameters can be

found in [67], [69] and [68].

The predicted sigma points at the k-th step (χ−k ), the mean (X̂−k ) and the covariance

(P−Xk
) of the k-th step state are described in (3.6). Note the superscript − denotes a prior

state.



χi−k = f(χik−1, uk−1), i = 0, · · · , 2n

X̂−k =
2n∑
i=0

Wmi
χi−k

P−Xk
=

2n∑
i=0

Wci

(
χi−k − X̂

−
k

)(
χi−k − X̂

−
k

)T (3.6)

Subsequently, the predicted measurement sigma points γ−k can be generated by finding

the predicted sigma points χ−k through the measurement equation (3.7).

γi−k = h(χi−k , uk), i = 0, · · · , 2n (3.7)
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Consequently, the weighted mean of the predicted measurement ŷ−k and the corresponding

covariance matrix P−yk as well as the cross-correlation matrix P−Xkyk
can be computed as shown

in (3.8).



ŷ−k =
2n∑
i=0

Wmiγ
i−
k

P−yk =
2n∑
i=0

Wci(γ
i−
k − ŷ

−
k )(γi−k − ŷ

−
k )T +R

P−Xkyk
=

2n∑
i=0

Wci(χ
i−
k − X̂

−
k )(γi−k − ŷ

−
k )T

(3.8)

In the correction step, UKF then updates the state using Kalman gain matrix Kk. The mean

value X̂k and covariance matrix PXk
(superscript − denotes a prior state) are expressed as

follows.


Kk = P−Xkyk

(P−yk)−1

X̂k = X̂−k +Kk [yk − ŷk]T

PXk
= P−Xk

−KkP
−
yk
KT
k

(3.9)

There are existing general Kalman filter Matlab toolboxes available. In this research, we use

a general EKF/UKF toolbox developed by Helsinki University [70]. Specific models of PMU

data-based synchronous generator estimation are described in the next section and coded in

the toolbox.

3.4 Implementation of UKF for Dynamic Parameter Estimation

In the proposed estimation model, a synchronous generator is considered as a constant

voltage source behind an impedance. The electromechanical dynamics can be described by

the following swing equation [71].
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
dδ(t)
dt

= ωs(ω(t)− ω0)

dω(t)
dt

= 1
2H

(Pm − Pg(t)−D(ω(t)− ω0))

(3.10)

where δ(t), ω(t), ω0 and ωs are the rotor angle in radius, rotor speed in pu, synchronous

speed in pu and base speed (377 rad/s), respectively. Rewriting the dynamic equations in

the discrete form, we will have:


δk = δk−1 + (ωk−1 − ω0)ωs∆t

ωk = ωk−1 + ∆t
2Hk−1

(Pmk−1
− Pgk−1

−Dk−1(ωk−1 − ω0))

(3.11)

where ∆t is the sample period.

The PMU measured data can be separated into two groups. One group is treated as the

input signals to the dynamic model, and the other group is treated as the outputs or mea-

surements. A PMU provides five sets of data at a generator terminal bus: voltage magnitude

(Vg), voltage phase angle (θ), active power (Pg), reactive power (Qg), and frequency (f). The

PMU data contains only the positive sequence in this application based on the assumption

that the system is operated under balanced conditions. Based on the swing equation, the

state vector of the system is defined as xk = [δk ωk]
T . If we treat the parameters (unknown

mechanical power Pm, inertia constant H and damping coefficient D) of the model as state

variables, the augmented state vector will be Xk = [δk ωk Pmk
Hk Dk]

T .

In this research work, we will use terminal voltage magnitude (Vg) and generator exported

power (Pg) as the input signals, the terminal voltage phasor angle (θ) together with the

reactive power are treated as the output signals. The relationship between input and output

signals can be written as follows.
Pg = EqVg

x′d
sin(δ − θ)

Qg =
EqVg cos(δ−θ)−V 2

g

x′d

(3.12)
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From (3.12) we can write:


EqVg sin(δ − θ) = Pgx

′
d

EqVg cos(δ − θ) =
√

(EqVg)2 − (Pgx′d)
2

(3.13)

Based on (3.13), the output signals can be expressed by the input signals and state

variables as follows.


θgk = δk − tan−1

(
Pgk

x′dk√
(Eqk

Vgk )2−(Pgk
x′dk

)2

)
Qgk =

√
(Eqk

Vgk )2−(Pgk
x′dk

)2−V 2
gk

x′dk
.

(3.14)

3.4.1 Primary and Secondary Frequency Control

Power system is faced with load change all the time because the power network is a

dynamic system which is changing due to different operating point conditions. When the

load is suddenly changed, the power balance between electrical power output and mechanical

power input of the generator will be lost. Such an unbalance in power equation of the

generator changes the Kinetic energy stored in the rotating system. Reducing the Kinetic

energy causes turbine speed and consequently the frequency of the system to fall and vice

versa. If changing the frequency continues, the generators synchronization will be lost, and

the system will be collapsed. To avoid such a scenario, the frequency of the system has to be

kept constant near its nominal value. The turbine governor has to be used to adjust turbine

input valve for changing mechanical power input of the generator which will finally bring

the rotor speed to a new steady-state in order to keep the frequency fixed.

In Fig. 3.1, R is the speed regulation constant, 1
R

is named as the droop gain, and Tr is

the turbine-governor time constant. A turbine-governor usually has the speed regulation of 5
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Figure 3.1. Synchronous generator model including primary and secondary frequency control.

to 6 percent from zero to the full load condition. The primary control is a negative feedback

from rotor speed with droop gain to the turbine block. The secondary control is a negative

feedback with PI controller to track the rotor speed change and tune the reference power

input of the generator. Fig 3.1 shows the block diagram of generator models. Additional

dynamic equations are as follows after considering the frequency controls.

dPm
dt

=
1

Tr

(
Pref − Pc − Pm −

1

R
(ω − ω0)

)
(3.15)

Rewriting in the discrete form, we have:

Pmk
= Pmk−1

+
∆t

Tr

(
Pref − Pck−1

− Pmk−1
− 1

R
(ωk−1 − ω0)

)
(3.16)

Similarly, the secondary frequency control can be written as:

Pck = Pck−1
+ (ωk−1 − ω0)Kik−1

∆t. (3.17)

The state vector of the system is now defined as xk = [δk ωk Pmk
Pck ]T . If we treat

the parameters of the model as state variables, the augmented state vector will be Xk =
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[δk ωk Pmk
Pck Rk Kik Hk Dk]

T . The complete generator estimation model is presented

as follows.



δk = δk−1 + (ωk−1 − ω0)ωs∆t

ωk = ωk−1 + ∆t
2Hk−1

(Pm − Pgk−1
+Dk−1(ωk−1 − ω0))

Pmk
= Pmk−1

+ ∆t
Trk

(
Pref − Pck−1

− Pmk−1
− 1

Rk
(ωk−1 − ω0)

)
Pck = Pck−1

+ (ωk−1 − ω0)Kik−1
∆t

Rk = Rk−1

Kik = Kik−1

Hk = Hk−1

Dk = Dk−1

Trk = Trk−1

(3.18)

The model will be adapted for PMU data-based estimation to enhance the convergence of

the UKF algorithm. Some parameters will be converted to new parameters in the estimation

process. Parameter conversion has also been adopted in the literature [10].

3.4.2 Model Validation

Kalman Filter uses some of the PMU’s measurement data from the real system as inputs

while assuming the others as outputs and try to match estimated model output with the

output of the real system. In a validation step, estimated parameters are used to build a

low order generator dynamic model. Then, event playback is used to validate the result by

comparing Estimated model output and actual measurements. Hybrid dynamic simulation

was proposed in [72]and [18] for model validation using PMU data.
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Hybrid dynamic simulation injects some of measured PMU data to the to a dynamic

simulated model as inputs so one can compare the model output with the actual measured

data. Figure 3.2 describes the model validation procedure. In this procedure, terminal

voltage magnitude and active power measurement are used as inputs to playback into the

estimated system.

Then voltage angle and reactive power measured from simulation playback are compared

with the actual measurement of the system. In This method, the external system is repre-

sented as an infinite bus connected to the generator bus with varying voltage magnitude and

phase angle. This assumption can be true mostly because, in the real implementation, the

size of the external system is much larger than that of the generator under validation. Thus,

the interaction between the generator and external network have a negligible effect on the

frequency of the system and terminal voltage. The detail discussion on event playback can

be found in [72] and [18].

Real Power System Network

PMU

Playback

Input 
Measurements 

(V, P)

Measured 
Output (θ,Q)

Simulated 
Output (θ,Q)

Compared for 
Validation

GS

GS

GS

UKF Estimated Subsystem model for  Validation

Figure 3.2. Model validation with event playback
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3.5 Case Studies

In order to generate PMU data for case study, time-domain simulation data is generated

using Matlab/SimPowerSystems. Demos in Matlab/SimPowerSystems includes a classic

two-area nine-bus system [71] shown in Fig. 3.3. This system consists of four generators

in two areas. Two tie-lines connect these two areas. At t = 1 second, a three-phase low

impedance fault occurs at Bus 101. After 0.2 seconds, the fault is cleared. A PMU is used to

record power, voltage, and the frequency data from Generator 1 terminal bus. The sampling

interval is 0.01 second.

G1

1

G2

2

320

G3

11

G4

12

12013

101

Load 1 Load 2

Three Phase 

Fault

Figure 3.3. The study system.

Three sets of data were recorded (shown in Fig. 3.4) and used to test UKF method.

Each set of data will represent a different model for Generator 1 in the simulation studies.

• Set 1: For benchmarking, classical generator model ( a constant voltage source behind

a transient reactance) is used in the simulation. In this case, the dynamic model used

in UKF is exactly the same as the simulation model.
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• Set 2: A sub-transient model which includes all damping winding dynamics is used to

represent Generator 1 in the simulation. In the estimation model, dynamics related to

the flux and damping winding have all been ignored.

• Set 3: The power system stabilizer (PSS), automatic voltage regulator (AVR), and

excitation system are added to the sub-transient generator model in this simulation.

Adding PSS, AVR, and excitation system adds transients to the internal voltage of

generator (Eq). In the estimation model, Eq is assumed to be constant.

In addition, turbine-governor, primary and secondary frequency control models same

as those in the estimation model have been considered in Matlab/SimPowerSystems-based

simulation. The generator parameters can be found in Table 3.1.

At least two initial guesses for each parameter will be used to demonstrate that UKF can

converge to the same estimation.

3.5.1 Parameter Conversion

In the process of UKF tuning, we found that direct estimation of R, Tr and H leads to

decreased rate of algorithm convergence. From (3.18), it can be anticipated that the state

variables ω and Pm are linearly related to the 1
2H

, 1
R

and 1
TrR

respectively. Therefore, a small

change in R, Tr and H results in big fluctuations in Pm and ω. In other words, the output

measurements have an insignificant sensitivity to the parameters R, Tr and H, which makes

the filter tuning very difficult.

To address this issue, parameters G = 100 , J = 1 and N = 1 will be estimated. These2H TrR Tr

changes would help the convergence of the UKF algorithm significantly, mostly because the 

direct relation of parameters and state variables, decreases the order on non-linearity of the 

dynamic model. With such changes, also ignoring the damping coefficient (D), (3.18) can 

be rewritten as (3.19).
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

δk = δk−1 + (ωk−1 − ω0)ωs∆t

ωk = ωk−1 + Gk−1

100
(Pm − Pgk−1

)∆t

Pmk
= Pmk−1

+Nk−1(Pref − Pck−1
− Pmk−1

)∆t

− Jk−1(ωk−1 − ω0)∆t

Pck = Pck−1
+ (ωk−1 − ω0)Kik−1

∆t

GK = Gk−1

MK = Mk−1

JK = Jk−1

Kik = Kik−1

(3.19)

In the literature, V , θ, P , and Q of PMU data are used as an input-output for Kalman

Filter [7,10,19]. However, in this section, frequency control parameters are to be estimated.

Based on our experience, without frequency measurements from the generator terminal bus,

convergence of the estimation is problematic. Therefore, the frequency of generator terminal

bus is recorded and used as an output of the estimated model.

We also make a simplifying assumption that the frequency measured at the generator

terminal bus is equivalent to the rotor speed (ω). The output signals can be written by input

signals and state variables in the discrete form as follows.



θgk = δk − tan−1

(
Pgk

x′dk√
(Eqk

Vgk )2−(Pgk
x′dk

)2
)

)
Qgk =

√
(Eqk

Vgk )2−(Pgk
x′dk

)2−V 2
gk

x′dk

fk = ωk

(3.20)
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Table 3.1. Generator parameters used in MATLAB/SIMPOWER simulations

Parameters Set 1 Set 2 Set 3

Eq (pu) 1.0567 1.8537 1.8537
x′d (pu) 0.3 0.3 0.3
x′′d (pu) − 0.25 0.25
x′q (pu) − 0.55 0.55

x′′q (pu) − 0.25 0.25

Tdo
′ (pu) − 8 8

Tdo
′′ (pu) − 0.03 0.03

Tqo
′ (pu) − 0.4 0.4

Tqo
′′ (pu) − 0.05 0.05

Pref (pu) 0.778 0.779 0.779
H (pu. sec.) 6.5 6.5 6.5
R (pu) 0.1 0.1 0.1
Tr (sec.) 0.1 0.1 0.1
Ki 50 50 50

AVR Gain(Ka) − − 200
AVR Ta − − 0.001

Exciter Ke − − 1
Exciter Te − − 0
PSS Kp − − 30
PSS Tw − − 10

PSS lead lag 1 Tnum − − 0.05
PSS lead lag 1 Tden − − 0.02
PSS lead lag 2 Tnum − − 3
PSS lead lag 2 Tden − − 5.4
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Figure 3.4. Three sets of PMU data generated from Matlab/SimPower systems simulation. Blue solid lines: Set 1; Red
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For this estimation model, Eq, Pref , x
′
d are assumed known. In the UKF algorithm, P

is the covariance matrix of the state variables, X0 is the initial guess of the augmented

state vector and P0 is the initial guess for the covariance matrix P . Estimation accuracy

is not sensitive to the initial guess of parameters or state variables. Initial guess for co-

variance matrix (P0) will influence the convergence rate. Therefore, fine tuning of P0 is

needed. Q is the covariance matrix of the process noise and kept constant for all three

sets of data. Table 3.2 shows the initial guess for X0 and P0 as well as diagonal elements

of process noise matrix Q. R is the covariance matrix of the output measurement noise

(R = diag

(
10−15 10−15 10−15

)
).

Table 3.2. Initial values for parameters estimation of generator with primary and secondary
frequency control

X0 All Sets P0 Set 1 Set 2 Set 3 Q All Sets

δ 0 P11 0.1 0.1 0.1 Q11 10−5

ω 1 P22 10−5 1e−5 10−5 Q22 10−11

Pm 0.8 P33 0.1 0.1 0.1 Q33 10−9

Pc 0 P44 10−5 1e−5 1e−5 Q44 10−9

G 1 P55 10−4 1e−4 80 Q55 10−4

J 10 P66 240 35 76 Q66 10−12

N 1 P77 6.3 3.4 10 Q77 10−6

Ki 10 P88 77 64 20 Q88 10−4

3.5.2 Simulation Results

Fig. 3.6-3.9 shows the estimation of states compared to the simulation one. As it can be

seen, because same classic generator model is used for both estimation and simulation model,

the rotor angle estimation exactly matches with the simulated rotor angle with benchmark

model in Set 1 scenario. However, in set 2 and set 3 scenarios, there is a difference between

simulated generator model and the estimated ones. Sub-transient generator model is used in

the simulation while classic generator model is employed in estimation. Therefore, there is a

discrepancy between the estimation and simulation of angle rotor in set 2 and set 3 though
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the dynamic trends match each other well. In order to explain this discrepancy, We have

to compare the classical model of the generator versus the two-axis sub-transient model of

the machine. Fig 3.5 shows both models. If we want to express the two-axis model with a

classical model equivalent [7] , we can write:

E =
√

(E ′od + (x′q − x′d)Ioq )2) + (E ′oq)
2 (3.21)

In consequence, there is always a constant discrepancy (δ′o) which can be calculated as

(3.22) between the estimated rotor angle and a simulated one.

δ′
o

= tan−1(
E ′oq

E ′od + (x′q − x′d)Ioq
)− π

2
(3.22)
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Figure 3.5. Two-axis model of the generator versus its classic model.

Fig 3.10-3.13 show the estimation and simulation result for inertia constant, turbine-

governor time constant, droop regulation and frequency loop Integrator constant respectively.

It is found that even for a complicated generator model equipped with PSS and AVR, UKF

can estimate all parameters and state variables with good accuracy.
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Figure 3.6. Rotor angle estimation and simulation results. Top: Set 1, Middle: Set 2, Bottom: Set 3
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Figure 3.8. Mechanical power estimation and simulation results. Top: Set 1, Middle: Set 2, Bottom: Set 3.
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3.
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Figure 3.12. Droop regulation estimation and simulation results. Top: Set 1, Middle: Set 2, Bottom: Set 3.
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3.5.2.1 Measurement Noises

In previous scenarios, measurement noises were assumed to be very small (10−15). How-

ever, in the real-world applications, the algorithm have to deal with a much higher level of 

measurement noises. In order to show the effect of such noises on proposed method, three 

different simulation scenarios were carried out with adding 1%, 2% and 5% Gaussian noises 

to the Set 3 of the recorded data and the results are compared to the previous parameters 

estimation. Table 3.5 presents the results for those scenarios. As it would be expected, it 

can be seen from the table that estimation error increased exponentially with increasing of 

the measurement noises. Although the error of the estimation was increased with respect to 

the increasing in the level of measurement noises, the results of the proposed method still 

show acceptable accuracy for the most of its applications.

3.5.2.2 Model Validation

In the validation step, estimated parameters are used to build a low order generator

dynamic simulation model as shown in Fig. 3.1. Then, event playback proposed in [18,72] is

used to validate the estimation model. During event play back, hybrid dynamic simulation

injects the inputs (measured PMU data) to the low-order dynamic simulation model, the

output of the model will be captured and compared with the actual measurements.

In the previous sections, although UKF is used to estimate parameters, some parameters 

such as x′d and Eq are assumed to be known. Moreover, all the generator model needs to 

have a damping ratio to stabilize the system. Therefore, in this section, UKF method is 

adjusted to estimate all the parameters of the model. In other words, transient reactance (x′d), 

generator’s internal voltage (Eq) and generator’s damping ratio (D) are added to the 

parameters which have to be estimated by UKF method. Thus, the augmented state vector

56



www.manaraa.com

will be Xk = [δk ωk Pmk
Pck Gk Jk Mk Kik x′dk Eqk Dk]

T . The PMU data are presented

in Fig. 3.4. Kalman filter’s parameter estimation are demonstrated in Figs. 3.14 and 3.15.

Estimated parameters have been used to build a continuous dynamic model of the gen-

erator in Matlab/Simulink. Then, input data (active power and voltage magnitude) are fed

into the model to generate the outputs. Frequency, the reactive power together with volt-

age phase angle are compared with the data measurements. Figure 3.16 shows the result

of validation. Three sets of models are constructed, one with all parameters included, the

second one without considering secondary frequency control (without Ki) and the third one

without considering any frequency control system (without R and Tr). As demonstrated in

Fig. 3.16, considering the frequency control systems in the estimation model will greatly

improve the match between the outputs and the PMU data.

3.5.3 Case Study Based on Real-World PMU Data

In this section, UKF method is applied on the PMU data from an anonymous busbar of

the MISO system to estimate parameters of a generator dynamic model. In the real-world

applications, the only data available is limited to PMU measurements. Equivalent dynamic

models are sought. Therefore, it can be anticipated that for the real-world application, all the

parameters of the generator are unknown and have to be estimated by the UKF method. The

augmented state vector will be Xk = [δk ωk Pmk
Pck Gk Jk Mk Kik x′dk Eqk Dk]

T . The

initial guess of the state variables X0 and its covariance matrix P0 as well as the covariance

matrix for the processing noise are listed in Table 3.4.

Fig. 3.17 shows the PMU data of 40 seconds. The set of data was recorded by PMUs 

after a generator trip event. The data contain significant noises. Besides, PMUs save the 

data with a 30 Hz sampling rate. Data starting from 12 seconds to 40 seconds are used for 

estimation. Note that, in the following figures the starting time is 12 seconds. Experiments 

show that 30 Hz sampling rate does not yield satisfactory performance of UKF. This finding
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concurs with the findings documented in [24] that measurements interpolation is needed to

improve the performance of Kalman filters. Our experiments show that the real data have

to be interpolated to 100 Hz for the UKF method to converge. Figs. 3.18 and 3.19 present

the estimation processes. Table 3.3 documents the final parameters estimation results.

Table 3.3. Parameter estimation for real-world PMU data

H R Tr Ki D x′d Eq
20.18 0.0176 0.073 1.3448 0.031 0.1947 1.0538

In the next step, the low-order model with estimated parameters was built in Mat-

lab/Simulink. Event playback is used to inject voltage magnitude and active power as in-

puts. The outputs from the estimated model and the output PMU measurements (frequency,

voltage phase angle and reactive power) are compared. Fig. 3.20 shows the validation re-

sults. It is observed that despite the high level of noise and unknown dynamic system model

structure, comparison of the PMU data with the validation model outputs shows a good

degree of match. The real-world PMU data case study demonstrates the feasibility of the

proposed estimation model in identifying a generator model.

Table 3.4. Initial state variables and covariance matrices for real-world PMU Data

X0 values P0 values Q values

δ 0 P1,1 0.1 Q1,1 1e−5

ω 1 P2,2 0.1 Q2,2 1e−9

Pm 0.8 P3,3 1e−4 Q3,3 1e−9

Pc 0.8 P4,4 1e−2 Q4,4 1e−9

G 15 P5,5 0.1 Q5,5 1e−8

J 50 P6,6 1000 Q6,6 1e−5

N 20 P7,7 0.1 Q7,7 1e−6

ki 10 P8,8 0.71 Q8,8 1e−12

D 0 P9,9 1e−4 Q9,9 1e−8

x′d 0.1 P10,10 1e−3 Q10,10 1e−7

Eq 0.9 P11,11 1e−4 Q11,11 1e−12
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Table 3.5. Effect of measurement error on parameter estimation error

scenarios
H Droop Tr Ki

Value Error (%) Value Error (%) Value Error (%) Value Error (%)
Simulation 6.5 0 0.2 0 0.1 0 50 0
0% error 6.4773 0.35 0.1992 0.40 0.1005 0.52 50.0127 0.02
1% error 6.4763 0.37 0.1992 0.40 0.1007 0.67 50.0391 0.08
2% error 6.4411 0.91 0.1989 0.56 0.0990 1.00 49.8697 0.26
5% error 6.8068 4.72 0.1948 2.61 0.1059 5.93 50.4820 0.97
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Figure 3.14. Generator parameters estimation and simulation results for set 3.
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3.6 Conclusion

UKF is implemented in this section of completed to estimate dynamic states and parame-

ters of a low-order synchronous generator model with both primary and secondary frequency

control systems. The proposed method uses voltage magnitude and active power measure-

ments as the inputs, voltage angle, reactive power and frequency as the outputs. The inertia

constant, damping coefficient, turbine-governor’s time constant, droop regulation as well as

secondary frequency integrator unit gain will all be estimated. Both simulation data and

real-world PMU data are used for case studies. In this research, various techniques are

implemented to improve UKF algorithm for this application. The techniques include: (i)

parameter conversion to increase parameter detection sensitivity from the measurements; (ii)

measurements interpolating to have a higher sampling rate to improve UKF convergence. In

the validation step, a low-order dynamic simulation model is constructed with the estimated

parameters. Input data are fed into the model to generate output data. The generated

output data will then be compared with the outputs from the measurements.

The case studies demonstrate the feasibility of the proposed UKF estimation approach for

system identification using PMU data. Through the proposed estimation method, a complex

generator model can be emulated using a low-order generator with frequency controls. The

case study on the real-world PMU data demonstrates the capability of the proposed UKF

on identifying an equivalent generator model.
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CHAPTER 4

ROBUST STATIC STATE ESTIMATION FOR AC NETWORKS

4.1 Note to the Reader

Portions of these results have been submitted for publication (as a 1st author in [73] as

well as 3rd author in [63]).

4.2 Introduction

Traditionally, Supervisory Control and Data Acquisition (SCADA) system using non-

synchronous data with low-density sampling rate have been used for monitoring and control-

ling of the system. Such measurements can not capture the system dynamics [74]. Reliable

operation and control of power system depend on the results of state estimation. Power sys-

tem state estimation has been widely investigated in the literature [7,23,25,75,76]. Corrupted

data usually exist in power system measurements due to limited measurement sensor’s ac-

curacy, communication system problems and cyber attacks. Therefore, state estimator has

been equipped with bad data identification algorithms in order to detect such corrupted

data and guarantee the accuracy of state estimation. Classic bad data detection algorithms

such as Largest Normalized Residue Test (LNRT) have been reported in the literature for

identifying bad data, [53–55].

LNRT test relies on the state estimation residuals and thus can only be implemented

after running state estimation. After any bad datum been detected, state estimation has to

be rerun by eliminating that bad datum. Hence, the efficiency and computational time of the
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LNRT algorithm becomes a major concern. Sparse Residual Estimator (SRE) with `1-norm

optimization was first introduced in [77] for recovering sparse signals from unreliable sensors

in the network by using sparse matrix characteristics to create an M-Huber estimator. In [62],

SRE application is expanded by using the method for joint linear state estimation and bad

data identification for addressing the computing issue associated with the traditional LNRT

method. The aforementioned research has focused on linear state estimation. The main goal

of this chapter is to introduce an algorithm for simultaneous nonlinear state estimation and

bad data identification.

The traditional nonlinear state estimation is formulated as an unconstrained optimization

problem and solved by Gauss-Newton iterative method [29]. The requirements of Gauss-

Newton method are that the objective function has to be continuous and the problem has to

be an unconstrained optimization problem. With l1-norm constraints introduced in robust

estimation, the second requirement cannot be fulfilled. In addition, other types of objective

functions (e.g., largest absolute value (LAV)) may not be continuous. In those cases, Gauss-

Newton method cannot be applied.

In this chapter, joint state estimation, and bad data detection problem will be formulated

as a constrained optimization problem. The traditional power flow constraints are non-

convex. There is no guarantee to find global optimum in polynomial time for nonconvex

problems. Convex relaxation approach, e.g., semidefinite programming (SDP) relaxations

and second-order conic programming (SOCP) relaxations, has been an attractive option to

solve non-convex state estimation problems.

In [56, 78], a new SDP state estimator is introduced to overcome the non-convexity of

the state estimation problem. Although SDP solvers can produce quality results and small

duality gap, they suffer from the high computational time limitation, especially for large-

scale systems. On the other hand, SOCP relaxation is superior in terms of computing time.

SOCP relaxation has been used to reformulate power flow and state estimation problems
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in [57–59]. Compared to SDP relaxation, the feasible region of the SOCP relaxation contains

the feasible region of the SDP relaxation for meshed networks. Therefore, SOCP relaxation

is termed as a weak relaxation.

Since SOCP relaxation can be weak for the meshed network, [60,61] suggested strength-

ening SOCP relaxation by separating its optimal solutions from the SDP feasible region. A

new least square estimation (LSE)-based SDP cuts for strengthening SOCP relaxation for

the optimal power flow problem has been proposed by authors in [63]. In this chapter, the

same cutting plane technique is implemented for the SOCP convex problem solving to result

in a tighter duality gap.

In summary, the main contributions of this part of research are:

• Introducing a new formulation of simultaneous AC network state estimation and bad

data identification. The constrained optimization problem is further relaxed using

SOCP relaxation technique.

• Implementing an LSE based SDP cutting plane method to solve the SOCP relaxed

problem. This solver leads to more accurate results of state estimation as well as bad

data identification.

4.3 Standard Power Flow Equations and its Relaxations

Power flow equations consist of the formulation for power injections of each bus of the

system and active and reactive power formulations for transmission line flows.

Using Sin = Y ∗(ViV
∗
i −ViV ∗n ) and Sin = Pin+jQin the polar form of power flow equations

can be written as (4.1)-(4.4). Therefore, it can be anticipated that AC power flow problem

is a non-linear and non-convex problem.
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Power injection equations, i.e.,

P g
i − P d

i =
N∑

n = 1

|Vi||Vn|(Gin cos(δi − δn) +Bin sin(δi − δn)) (4.1)

Qg
i −Qd

i = −
N∑

n = 1

|Vi||Vn|(Gin sin(δi − δn)−Bin cos(δi − δn)) (4.2)

Also, each transmission line’s power flow equation can be written as,

Pin = gin|Vi|2−gin|Vi||Vn|cos(δi − δn)− bin|Vi||Vn|sin(δi − δn) (4.3)

Qin = −(bin +
bsh
2

)|Vi|2+bin|Vi||Vn|cos(δi − δn)− gin|Vi||Vn|sin(δi − δn) (4.4)

For writing power flow equations in rectangular form, consider Vi = ei + jfi. Therefore,

one can write |Vi|2 = e2
i + f 2

i . The rectangular form of power flow equations which is shown

in (4.5)-(4.8), drives by substituting new variables ei and fi into the equations (4.1)-(4.4).

P g
i − P d

i = Gii(e
2
i + f 2

i ) +
N∑

n = 1

n 6= i

[Gin(eien + fifn)−Bin(eifn − enfi)] (4.5)

Qg
i −Qd

i = −Bii(e
2
i + f 2

i )−
N∑

n = 1

n 6= i

[Bin(eien + fifn) +Gin(eifn − enfi)] (4.6)

Pin = gin(e2
i + f 2

i )− gin(eien + fifn) + bin(eifn − enfi) (4.7)

Qin = −(bin +
bsh
2

)(e2
i + f 2

i ) + bin(eien + fifn) + gin(eifn − enfi) (4.8)
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4.3.1 The SDP Relaxation

SDP relaxation which has been widely reported in literature, is first introduced in [79], [80]

and [81]. For applying SDP relaxation, the rectangular form of power flow can be used. Let’s

define hermitian matrix X (i.e. X = X∗) and let it be X = V V ∗. Based on X definition,

one can write equations (4.9)-(4.11).

Xin = <(Xin) + j=(Xin) = ViV
∗
n ∀(i, n) ∈ L (4.9)

Xni = X∗in = <(Xin)− j=(Xin) ∀(i, n) ∈ L(4.10)

Xii = |Vi|2 ∀i ∈ B (4.11)

By substituting given matrix X, equations (4.5)-(4.8) become linear:

P g
i − P d

i = GiiXii +
N∑

n = 1

n 6= i

[Gin<(Xin) +Bin=(Xin)] (4.12)

Qg
i −Qd

i = −BiiXii−
N∑

n = 1

n 6= i

[Bin<(Xin)−Gin=(Xin)] (4.13)

Pin = ginXii − gin<(Xin)− bin=(Xin) (4.14)

Qin = −(bin +
bsh
2

)Xii + bin<(Xin)− gin=(Xin) (4.15)

Since X = V V ∗ and is a hermitian matrix, then equations (4.16) and (4.17) characterize

X.
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X � 0 (4.16)

rank(X) = 1 (4.17)

Using above Semidefinite Programming formulation, we were able to find linear equations

for power flow. However, this formulation still is a non-convex problem due to the rank

constraint in the equation (4.17). Therefore, discarding rank constraint in the above equation

leads to SDP relaxation of the power flow problem which is a convex optimization. Note

that, since X components are a complex number the above SDP relaxation belongs to the

complex domain.

4.3.2 The SOCP Relaxation

SOCP relaxation can be applied to the SDP model by further relaxation of SDP constraint

in 4.16. For doing so, we have to impose positive semidefinite constraints on all the 2 × 2

submatrices of X for each line of the power network.

Xii Xin

Xni Xnn

 � 0 ∀(i, n) ∈ L (4.18)

Because X is a hermitian matrix and based on the Sylvester criterion, (4.18) is equivalent

to the following second-order cone constraints [61]:

Xii, Xnn ≥ 0 ∀i, n ∈ B (4.19)

<(Xi,n)2 + =(Xin)2 6 (
Xii +Xnn

2
)2 − (

Xii −Xnn

2
)2 (4.20)

It is proven in [82] that the above system of equations is strictly equivalent to the con-

straint (4.16) for radial power networks. However, in meshed network, SOCP relaxation can
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be weak [61]. By looking at the power flow formulations in (4.1)-(4.4), one can find another

formulation to implement SOCP relaxation to the power flow problem.

From equations (4.1)-(4.8), we can observe that one of the following forms is responsible

for non-linearity and non-convexity of power flow problem: i. e2
i f

2
i = |vi|2, ii. eien + fifn =

|Vi||Vn|cos(δi − δn) and iii. eifn − fien = −|Vi||Vn|sin(δi − δn). For dealing with those non-

linear terms, we can define new variables T and S in a way that Tii = e2
i f

2
i = |vi|2 for all

buses and Tin = eien+fifn = |Vi||Vn|cos(δi−δn) and Sin = eifn−fien = −|Vi||Vn|sin(δi−δn)

for all lines of the power network. Substituting new variables into the equations (4.1)-(4.8),

the new formulation of power flow derives as follows:

P g
i − P d

i = GiiTii +
N∑

n = 1

n 6= i

[GinTin −BinSin] (4.21)

Qg
i −Qd

i = −BiiTii−
N∑

n = 1

n 6= i

[BinTin +GinSin] (4.22)

Pin = ginTii − ginTin + binSin (4.23)

Qin = −(bin +
bsh
2

)Tii + binTin + ginSin (4.24)

To make alternative formulation to be exact, following relations between the new intro-

duced variables have to be held:

Tin = Tni, Sib = −Sni (4.25)

T 2
in + S2

in = TiiTnn (4.26)
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Equation (4.26) is a surface of a cone, and above formulation belongs to the SOCP.

However, (4.26) is a non-convex constraint and we can further apply SOCP relaxation to

alternative formulation by changing this constraint from equality to inequality (i.e. T 2
in +

S2
in 6 TiiTnn). Note that r elaxed constraint is equivalent to (4.20) in standard SOCP

formulation. The above formulation was first introduced in [83] and [57]. Latter shows that

The alternative SOCP power flow problem is exact for radial networks. Since the alternative

formulation is a strick relaxation of the power flow problem for meshed networks, the optimal

solution for this problem may not be feasible, and the relaxation can be weak for the network

with cycles. To take care of Kirchhoffs Voltage Law [58] proposed to introduce the following

constraints to the alternative formulation of power flow in order to make the formulation be

exact for the meshed networks:

δn − δi = tan−1(
Sin
Tin

) (4.27)

Note that, since the equation in (4.27) contains tangent function, it’s a non-convex con-

straint.

4.3.3 State Estimator with SOCP Relaxation

Voltage magnitudes and angles of each bus of the power network are usually assumed as

a state variable. Therefore based on the alternative formulation of the power flow problem

in (4.21)-(4.27), state vector x can be defined as:

x = [..., Tii, ..., Tin, ..., Sin, ..., δi, ...]
T (4.28)

There are two different methods which widely used for state estimation, Least Square

estimation and Least absolute value estimation. LSE minimizes the sum of the squares
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of errors between measured values and measurement function. Therefore the cost function

for the state estimation problem can be represented by the second norm of the summation

of errors between measurement function and measurements. Thus LSE cost function is a

quadratic convex problem. i.e.

min
m∑

k = 1

||hTk (x)− zk||22 (4.29)

hTk is the kth row of the linear measurement function matrix and zk is the kth mea-

surements of the system. In compare to the LSE, Least Absolute Value Estimation (LAV)

minimizes the sum of absolute errors between measured values and measurement function

outputs. The LAV cost function is a non-convex problem due to its absolute function. How-

ever, it’s well known that we can make the problem convex by introducing two positively

bounded variable to the cost function of LAV. Therefore, the problem can be represented as

follows:

min
m∑

k = 1

(rk + bk) (4.30)

s.t. hTk (x)− zk + rk − bk = 0 (4.31)

rk ≥ 0, bk ≥ 0, for k = 1, ...,m (4.32)

where rk and bk are positively bounded variables, introduced for taking care of absolute

function.

Based on the measurements type, measurement function takes different forms. If the

measurement contains Real and Reactive power injections, measurements function is in the

form of equations (4.21) and (4.22).
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Also, equations (4.23) and (4.24) represents transmission lines Power flow measurement

functions. Furthermore, sometimes the measurements contain transmission lines current

magnitudes transformed into the square of measurement current magnitudes and bus voltage

magnitudes transformed to the square of the measurement voltage magnitudes as well. In

those cases, the measurement functions are in the form of (4.33) and (4.34) respectively.

hTk (x) = [g2
in + (bin +

bsh
2

)2]Tii + (g2
in + b2

in)Tnn

− 2[g2
in + bin(bin +

bsh
2

)]Tin − 2(
ginbsh

2
)Sin (4.33)

hTk (x) = Tii (4.34)

Each mentioned estimation methods restricted to four types of constraints. The first

type of constraints which is shown in (4.35) models zero-injection pseudo-measurement. The

second type of constraints in (4.36) is inequality constraints, relates to the direction of

power flow or power injection and usually uses in conjunction with the current magnitude

measurements.

hTk (x) = zk (4.35)

zmink ≤ hTk (x) ≤ zmaxk (4.36)

Also adding feasibility constraints in the form of (4.26) and (4.27) can help optimization

to converge to the feasible optimal solution. Note that feasibility constraints are non-convex

functions. Because of that, we have to apply SOCP relaxation to the state estimation prob-

lem as it has been discussed in the previous section. Therefore, applying SOCP relaxation

makes equality sign in (4.26) substitute by an inequality sign. Also, angle constraint in
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(4.27) will be discarded, and thus SOCP relaxation based state estimator algorithms can be

represented by one of the following forms.

Algorithm 1 LSE state estimator with SOCP relaxation

min
∑m

k = 1
||rk||22

S.t.
hTk (x)− zk + rk = 0 (form of(4.21)-(4.24)&(4.33)-(4.34))
hTk (x) = zk (zero-pseudo measurements)
zmink ≤ hTk (x) ≤ zmaxk

T 2
in + S2

in ≤ TiiTnn

Algorithm 2 LAV state estimator with SOCP relaxation

min
∑m

k = 1
(rk + bk)

S.t.
hTk (x)− zk + rk = 0 (form of(4.21)-(4.24)&(4.33)-(4.34))
hTk (x) = zk (zero-pseudo measurements)
zmink ≤ hTk (x) ≤ zmaxk

T 2
in + S2

in ≤ TiiTnn
hTk (x)− zk + rk − bk = 0
rk ≥ 0, bk ≥ 0

4.4 Bad Data Detection Algorithms

Corrupted data usually exist in power system measurements due to limited measurement

sensor accuracy, communication system problem and cyber security attacks. Also, sometimes

the corrupted data occurs because meters are out of bias or having drifts, the communication

system suffers from wrong connections or outage, or the meters subject to the noises from

unexpected interferences. Therefore, it is important that state estimator has the ability to

detect this corrupted data and eliminates bad data for increasing the accuracy of estimation

and guarantees the reliable operation of the power system.

Some of the bad data such as negative voltage magnitude, measurements with the orders

of magnitude larger or smaller than it can be, or the significant difference between incoming
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and leaving current at a connection node are easy to detect and can be eliminated before

running SE algorithm. However, it is not true for all type of bad data, and some bad data

are not easy to detect.

For the bad datum which not relates to cyber security attacks, it can be represented by

Gaussian distribution with a zero mean. Such bad data can broadly classify as the number

of measurements, that contain corrupted data. Therefore, the classification of bad data is

as follows:

• Single bad data: Only one of the measurements is corrupted and has a large error in

entire system

• Multiple bad data: There are multiple measurements with corrupted data and large

error in the system.

Multiple bad data may occur in measurements with residuals with weak or strong cor-

relations. In strongly correlated measurements, the bad data in one will affect the residuals

of the others significantly and thus cause some good sensors appears among corrupted mea-

surements. In contrast, weakly correlated measurements, the error of one does not affect

the other ones. Also, in strongly correlated measurement residuals, the errors may or may

not be confirming which means the errors may or may not consisting with each other [29].

Therefore, multiple bad data can be classified into three groups:

• Non-interacting multiple bad data with weakly correlated residuals.

• Interacting multiple bad data with non-confirming strongly correlated residuals.

• Interacting multiple bad data with confirming strongly correlated residuals.

The performance of traditional tests depends on the type of errors in the system. There-

fore, upcoming sections will review the different bad data identification tests and compare

their performance in the detection of various types of bad data.
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Figure 4.1. χ2 probability density function with 15 degrees of freedom

4.4.1 Chi-squares χ2 Distribution Test

Figure 4.1 shows the χ2-probability density function (p.d.f) with 15 degrees of freedom.

The probability of X being larger than a threshold xt can be calculated by the following

equation:

PrX > xt =

∫ ∞
xt

χ2(u)du (4.37)

For using χ2 test for bad data identification, an acceptable probability of error should

be considered which usually have been set to 0.05 in literature. Based on chosen error

probability, the threshold xt can be set such that:

PrX > xt = 0.05 (4.38)
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Based on equation (4.38) and the degree of freedom which is m(number of measurements)

minus n(number of unknown states), the threshold xt can be obtained from chi2 p.d.f table.

The threshold represents the largest acceptable value for measurement residuals that will

not contain any bad data. In the other word, if a measurement residual exceeds the threshold

xt, with the 95% probability, the measurement contains bad data [29]. Therefore, χ2 bad

data identification test algorithm can be summarized as follows:

Algorithm 3 χ2-test for bad data identification

Solve the LSE estimation and calculate the residuals (ri = ∆zi −∆ẑi ∀i).
Look up the threshold value based on 95% detection confidence and (m − n) degrees of
freedom from the χ2 distribution table p = Pr(ri 6 χ2

(m−n),p)

if ri > χ2
(m−n),p then

The measurement is suspected to contain bad data.
else
The measurement will be assumed without any bad data.
end if

Based on above algorithm, χ2-test is inaccurate and may fail to detect bad data in some

cases due to the errors by residuals [29]. Therefore, Largest Normalized Residue Test (LNRT)

has been introduced in the literature.

4.4.2 Largest Normalized Residue Test (LNRT)

Normalize residual can be calculated by dividing the absolute value of the residuals

obtained form LSE estimation by their corresponding diagonal elements of the residual co-

variance matrix:

rNi =
|ri|√
RiiSii

∀i (4.39)

Based on the above definition, the normalized residue vector has a Standard Normal

Distribution. i.e. rN ∼ N(0, 1). Therefore, choosing a static threshold based on desired

level of detection sensitivity and comparing the normalized residue with chosen threshold
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will identify the measurement with data [29]. The LNRT algorithm can be summarized as

follows:

Algorithm 4 LNRT algorithm for Bad Data Detection

Calculate the Jacobian matrix H with (∆Z = H∆X + U).
Derive the residual sensitivity matrix S = I − (HTR−1H)−1HTR−1 (R is the diagonal
covariance matrix of the measurement noises).
Calculate residual values (ri = ∆zi −∆ẑi ∀i).
Calculate normalized residuals (rNi = |ri|√

RiiSii
∀i)

if the largest element in rNi ≥ β then
the measurement corresponding to the largest normalized residual is removed, and SE is
performed again.
end if

The traditional test such as LNRT can detect single bad data correctly. However, for

multiple bad data, LNRT is able to detect non-interacting and non-conforming interacting

bad data sequentially. Which means after the SE algorithm should rerun multiple times after

detecting every bad data. Besides, for confirming interacting bad data, the LNRT method

may fail to identify them. In other words, if the system contains two measurements with

confirming interacting residuals, the LNRT test may fail to detect any of them [29].

4.4.3 Hypothesis Test

For addressing the limitations of traditional bad data tests, Hypothesis test has been

introduced in literature. The idea behind Hypothesis test is to estimate the measurement

errors directly, instead of using derived residuals for the test. The hypothesis test is a general

method to accept or reject a statement. The statement is being tested referred to as the

Null hypothesis (H0) and it’s complement is referred to as alternative hypothesis (H1) [29].

For bad data identification, the null hypothesis (H0) and the alternative hypothesis (H1)

may be chosen as follows:

• H0: measurement i does not contain bad data.
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• H1: measurement i is corrupted and contain bad data.

Based on above definition, two types of error can be made in accepting or rejecting

H0 [29]:

• Error type I is rejecting H0 when the measurement does not contain bad data.

• Error type II is rejecting H1 when the measurement contains bad data.

There are two alternative approaches for choosing the threshold for hypothesis test based

on above types of errors. For more detail regarding the hypothesis test please see [29] and [77].

4.5 Proposed Joint State Estimation and Bad Data Identification Algorithm

Nonlinear measurement function can be represented by following equation:

z = h(x) + w (4.40)

where z is the measurement vector, x is the state variables vector, h(x) is the measurement

function coefficient and winRm represents noises.

If a corrupted data exists in the measurement, a sparse vector o can be added as an

unknown vector which only has non-zero element o(i) if z(i) contains bad data [84], [77], [62].

In this case, the new measurement model can be represented as (4.41).

z = h(x) + o+ w (4.41)

Joint estimation of x and o can reveal states while identifying the corrupted data. [84]

shows that relying on the sparsity of o and using above mentioned Hypothesis Test, if a list

of τ0 faulty measurements is expected, ideally a combination of `0-pseudonorm and `2-norm
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as shown in (4.42) could successfully recover x and o.

min
x∈X,o

||z − h(x)− o||22

s.t. ||o||0 ≤ τ0

(4.42)

The problem is `0-pseudonorm in (4.42), which renders NP-hard and makes it computa-

tionally impossible to solve the optimization for large scale systems. In order to make the

problem computationally efficient, a well-known convex `1-norm relaxation can be applied

to above constraint [84], [62].

min
x∈X,o

||z − h(x)− o||22

s.t. ||o||1 ≤ τ1

(4.43)

In standard AC state estimation, measurement functions are nonlinear and non-convex

as shown in equations (4.1)-(4.4). Therefore in [84] iterative linearization was used to build

convex optimization problems at every step.

In this part of the research, we adopt SOCP relaxation to build convex optimization

problem with an `1 norm constraint. Our formulation avoids linearization and can lead to

more accurate estimation and identification results. Note that the state variables in our

constrained optimization problem are no longer voltage magnitudes and angles, instead they

are S and T .

4.6 New LSE Based SDP Cuts for State Estimator with SOCP Relaxation

In this section first, we investigate a new SOCP relaxation of the power flow problem

using cycle basis theory and then propose a new LSE based SDP cut to strength SOCP

relaxation introduced in previous sections. This section is the first step for improving static

state estimation solver.
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4.6.1 Cycle Based Relaxation of AC Power Flow

Recently, Kocuk et al. [60] proposed a new cycle based SOCP relaxation for power flow

equations. He suggested that instead of using feasibility constraint in (4.27), we can consider

a relaxation that guarantees angle differences sum up to 0 modulo 2π over every cycle in a

cycle basis. In this way we would able to take care of Kirchhoff’s voltage law for every mesh

(cycle) in the power network:

∑
(i, n) ∈ C

(Vi − Vn) = 0, ∀C ∈ cycle basis (4.44)

A Cycle Basis of a Graph is a set of simple cycles that forms a subgraph in which each

vertex has an even degree [85]. For more detail regarding Cycle Basis, please see [86]. Also,

the algorithm used for finding the fundamental cycle basis of a graph introduced in the

appendix. Since the sum of the angeles in cycle sum up to zero in new cycle base relaxation,

one can conclude the following equation:

cos(
∑

(i, n) ∈ C

δin) = 1 (4.45)

If we replace δ angles in (4.45) with their corresponding T and S equivalents based on

the equation in (4.27), the cycle constraint can be written as a degree |C| homogeneous

polynomial equality relates to the variables Tii, Tin and Sin [60]. For example, [61] shows

that the cycle constraint for a 3-cycle in a cycle basis with C = {(1, 2), (2, 3), (3, 1)}, can be

written as follows:

T31T23 − S31S23 = T33T12 (4.46)

S31T23 + T31S23 = −T33S12 (4.47)
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For a larger cycle in a Cycle Basis, [60] proposed decomposition procedures to a 3 and 4-

cycles by introducing artificial edges and their corresponding variables. In this way, feasibility

constraint in (4.27) is relaxed to its equivalent cycle constraints for each cycle in a cycle basis.

Although the cycle constraints created by the above procedure are non-convex, but linking

the feasible constraint to the cycles in a cycle basis will introduce new inventive ways to

strength SOCP relaxation by adding inequality SDP cuts related to each cycle in a cycle

basis as we will show in the following section.

4.6.2 Algorithm for Finding Fundamental Cycle Basis

Fundamental Cycle Basis is a set of linearly independent cycles allows every Eulerian

subgraph to be expressed as a symmetric difference of basis cycles [85], [86]. One of the

applications of Cycle Basis is on applying Kirchhoff’s voltage law for an electrical network.

Instead of writing mesh equation for all cycles in the electrical network, it has been proven

that ( [86] and [60]), it’s sufficient to apply the Kirchhoff’s voltage law for any cycle in cycle

basis. In order to find fundamental cycle basis in a graph G = (V,E), first we have to find

spanning tree or spanning forest (more than one spanning tree) of the graph, together with

the edges which do not belong to that spanning tree.

For finding spanning tree of a graph, Greedy Algorithm has been used in literature.

Algorithm 5 shows the steps for finding spanning tree based on Greedy algorithm [87].

For a graph with n nodes and m edges (n buses and m transmission lines for Power 

network) there are c = m − n + 1 fundamental cycles in cycle basis [86]. The algorithm for 

finding those cycles will be as follows.

If T is a spanning tree of graph G and e1, e2, ..., ec are the remaining edges of G that

does not belong to T , then for every remaining edge e we will have one fundamental cycle.

In order to find that cycle, remaining edge e will be added to the spanning tree T and will

create a cycle in T .
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Removing all the leaves from T , will give corresponding fundamental cycle. The above

algorithm is shown in Algorithm 6.

Algorithm 5 Finding spanning tree T of a graph G = (V,E)

Initially E contains all edges in G
Initially T which will store edges of a spanning tree is empty
while E is not empty do
Choose i ∈ G

if i is not creating loop with other edges in T then
Add i to T

end if
end while

Algorithm 6 Finding fundamental cycle basis

calculate T , e and c = m− n+ 1
for i = 1 to c do
add ei to T
remove all the leaves from T
store the T as a cycle
end for

For example, consider IEEE14 bus system in Fig 4.2. The spanning tree of 14 bus system

is shown in Fig 4.3. By comparing T with Fig 4.2, we can find out that the remaining edges

which do not belong to T are e = {(2, 5), (3, 4), (4, 5), (7, 9), (10, 11), (12, 13), (13, 14)}.

Now, when we add the e1 to the T the new T will be as shown in Fig 4.4. Eliminating

leaves gives us the first fundamental cycle as it is shown in Fig 4.4. This algorithm will

be repeated for all the remaining age in e. The final answer for fundamental cycle basis is

shown in Fig 4.5.
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Figure 4.2. IEEE-14 bus system
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4.6.3 Implementing LSE Based SDP Cuts Algorithm

SOCP relaxation solver can be weak for meshed power network due to discarding the

feasibility constraint in (4.27). In the other hand, SDP relaxation is known to produce very

tight lower bound and providing quality solution for power flow optimization, but SDP solvers

still have scalability issues [61]. For using the benefit of less computationsl time in SOCP

relaxation together with the benefit of a tight lower bound in SDP relaxation, SDP cuts are

introduced. [63] proposed strengthening SOCP relaxation by adding inequality constraints

to separate SOCP answers from SDP feasible region. The SDP cut first introduced in [61]

and [60]. For doing so, first, we have to explore the relationship between alternative SOCP

relaxation and SDP relaxation. This part of our research is an introduction for improving

static state estimation solver to address the non-convexity and non-linearity of SSE. In

section 4.3.1 SDP relaxation for power flow was introduced in the complex and real domain.

Based on those difinitions, let introduced W as follows:

W =



e1

...

en

f1

...

fn



[
e1 · · · en f1 · · · fn

]

=



e2
1 e1e2 · · · e1en e1f1 · · · e1fn
...

...
...

...
...

. . .
...

ene1 · · · · · · e2
n enf1 · · · enfn

f1e1 f1e2 · · · f1en f 2
1 · · · f1fn

...
...

...
...

...
. . .

...

fne1 fne2 · · · fnen fnf1 · · · f 2
n



(4.48)
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Since W = [e; f ][eT , fT ], then W � 0 and rank(W ) = 1 which is exactly the condition

of SDP relaxation in section 4.3.1. Therefore, power flow formulation with SDP relaxation

in the real domain can be written as follows:

P g
i − P d

i = Gii(Wii +Wi′i′) +
N∑

n = 1

n 6= i

[Gin(Win +Wi′n′)−Bin(Win′ −Wni′)] (4.49)

Qg
i −Qd

i = −Bii(Wii +Wi′i′)−
N∑

n = 1

n 6= i

[Bin(Win +Wi′n′) +Gin(Win′ −Wni′)] (4.50)

Pin = gin(Wii +Wi′i′)− gin(Win +Wi′n′) + bin(Win′ −Wni′) (4.51)

Qin = −(bin +
bsh
2

)(Wii +Wi′i′) + bin(Win +Wi′n′) + gin(Win′ −Wni′) (4.52)

where i′ = i+ |B| and n′ = n+ |B|. By comparing SDP relaxation in(4.49)-(4.52) with alter-

native SOCP relaxation formulation in (4.21)-(4.24), we can find the relationship between

SDP variable W and SOCP variables T and S which showed in (4.53)-(4.55).

Tin = eien + fifn = Win +Wi′n′ (i, n) ∈ L (4.53)

sin = eifn − enfi = Win′ −Wni′ (i, n) ∈ L (4.54)

Tii = e2
i + f 2

i = Wii +Wi′i′ i ∈ B (4.55)

Based on above equations, For every Tin, Sin and Tii, we can express them to be the

Frobenius product related to the matrix W . For example, for a three-bus system with every

two buses connected, we have
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c11 =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


︸ ︷︷ ︸

A1

•W = Trace(A1W
T ) (4.56)

where • denotes Frobenious product. For the test system with 3 buses and 3 lines, we will

have 12 variables and therefore 12 different Al.

z =

[
c11 c22 c33 c12 c13 c23 s12 s13 s23

]T
(4.57)

Therefore, for any solution (T ∗, S∗) of SOCP relaxation, if exist any symmetric semidefi-

nite W ∗ that satisfies equations in (4.53)-(4.55), then (T ∗, S∗) belong to SDP feasible region

and it’s an optimal solution for SDP relaxation. If such W ∗ does not exist, we can sep-

arate (T ∗, S∗) from SDP feasible region by adding sets of inequality constraints to SOCP

relaxation. This procedure proposed in [60] for the first time. Note that finding W in this

procedure needs solving SDP optimization with the matrix of the same size of the original

SDP relaxation problem which is very time-consuming. Therefore, instead of a full matrix,

we can separate the SOCP relaxations over every cycle in a cycle basis. In other words, for

any cycle C belongs to cycle basis, we are looking to find corresponding submatrix w̃ of W .

This way, the separation will be very efficient and effective. In this case, the SDP set we are

looking for can be defined as follows: S := z ∈ R2|C| : ∃W̃ ∈ R2|C|×2|C| s.t.

− zl + Al • W̃ = 0 ∀l ∈ L, W̃ � 0

 (4.58)
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[63] proposed a new method to find proper inequality constraints to separate SOCP

relaxation results from SDP’s feasible region. The philosophy is explained by Fig 4.6.

S

z0

z*

αT(z-z0)=0

S

z0

z*

αTz=0

S
z0

αTz=0

S

z0

z* αT(z-z0)=0

αT(z-z*)=0

Figure 4.6. LSE-based SDP cut will add αT (z − z∗) ≤ 0 as constraint to the SOCP problem

Based on LSE theory, for any optimal solution of SOCP relaxation z0 belong to cycle C

in a cycle basis, First, we will find the shortest distance from z0 to the set S where z∗, and

W̃ ∗ is the corresponding value found in S. Therefore, a small LSE optimization over a cycle

in (4.59) will give us corresponding z∗, and W̃ ∗ for set S.

min
zi,W̃

‖z0 − zi‖2 (4.59)

st. zi = Trace(AiW̃
T ), i = 1, · · · , 12

W̃ � 0

where, W̃ is a corresponding submatrix of W for cycle C in a cycle basis.

Based on LSE thorium, If the norm of z0− z∗ is zero, that means z0 belongs to the SDP

set and z0 meets the requirement of cycle constraint. Therefore, α = z0− z∗ = 0 and no cuts

will add to the SOCP relaxation problem. In the other hand, if z0 does not belong to the

SDP feasible region, then α 6≡ 0 and αT (z − z∗) ≤ 0 inequality constraints will add to the

original SOCP problem. This method will apply for every cycle in a cycle basis. Therefore,
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in each iteration, several cuts will add to the original problem. Our studies show that even

3 to 4 iterations are enough to reach to a quality result for state estimation with SOCP

relaxation. Based on all of the above discussion, the proposed joint optimization algorithm,

can be summarized as follows:

Algorithm 7 Proposed joint state estimation and bad data detection algorithm for AC
networks

Input AC network model
Calculate Ybus and Branch matrices for input system
Creat initial conditions and measurement matrix
Solve convex SCOP-based SE for finding initial guess for SE problem
for i=1 to number of iterations do
Solve joint algorithm and find the optimal solution for SOCP based SE
Separate cutting planes from each cycle in cycle basis by LSE-based SDP separation
Add cuts and resolve Joint optimization algorithm.
end for
If there are any measurements with bad data, remove the measurement and rerun the join
optimization.

The coding of the proposed algorithm can be found in the appendix.

4.7 Case Studies

In this section, two categories of case studies are presented to show the effectiveness of the

proposed simultaneous state estimation and bad data identification algorithm. The algorithm

is programmed and implemented using CVX toolbox of the MATLAB [88]. MATLAB have

been running on a Core2Duo, 3.00 GHz PC with 6.00 GB of RAM. MOSEK solver [89] is

used for solving convex optimization. In each scenario of case studies, MATPOWER OPF

results have been used as the true values of the measurements [90]. Noises were represented

using random Gaussian distribution values with zero mean, and standard deviation of 0.01

pu for power and 0.005 pu for voltage is added to the true measurements.

Case studies are carried out in two different steps. In the first step, the proposed strength-

ened SOCP estimator with SDP cuts is tested on the IEEE-14, 30 and 118 bus systems as
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well as 17 of NESTA test cases and the results are compared with those obtained from the

estimator using SOCP only (without SDP cuts) [59]. In the next step, joint state estimation

and bad data identification are tested. First, the proposed algorithm is tested in the presence

of one or two corrupted measurements. Next, the algorithm is tested in the presence of multi

bad data measurements.

4.7.1 Least Absolute Value State Estimation with Conventional Measurement

Set

In this section, proposed algorithm was tested on IEEE 14, 30 and 118 test system. The

results of the proposed estimator then compared to the classic SOCP relaxed optimization

found in [59]. In order to make such comparison to be meaningful, the same approach was

used for all of the test systems, e.g. In order to ensure the observability of the system,

the conventional measurement sets were adapted from [91] and can be found in Table 1

in [59]. also, for IEEE 118 bus system, simple measurement set consist of (i)The real and

reactive power flow for each end of transmission lines and (ii)Voltage magnitude at the slack

bus. Equations (4.60)-(4.63) shows the performance indexes used to evaluate the proposed

algorithm.

RMS − V E =

√∑N
i=1(V tr

i − V e
i )2

N
(4.60)

RMS − AE =

√∑N
i=1(δtri − δei )2

N
(4.61)

REL− V E = max
i=1,...,N

∣∣∣∣V tr
i − V e

i

V tr
i

∣∣∣∣× 100 (4.62)

REL− AE = max
i=1,...,N

∣∣∣∣δtri − δeiδtri

∣∣∣∣× 100 (4.63)
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In equations (4.60)-(4.63), RMS-VE represents RMS voltage error in p.u, RMS-AE rep-

resents RMS angle error (rad), REL-VE represents maximum relative voltage error (%) and

REL-VE presents maximum relative angle error(%) respectively. Note that in all the sce-

narios, in order to avoid division by zero in REL-AE and be able to have a meaningful

comparison between the maximum relative voltage and the maximum relative angle, refer-

ence bus angle assumed to be 1 rad.

Table 4.5 shows the comparison between SOCP estimator and proposed LSE-SDP es-

timator. From table 4.5 for all three cases, the proposed LSE-SDP method significantly

dominates SOCP estimator. The cost of using proposed method is its computational time.

Since the algorithm needs to solve iteratively, its computational time is higher than SOCP

estimator. For instance, for IEEE 14, IEEE 30 and IEEE 118 bus systems, SDP separation

applied for four iterations and the computation time was 0.64, 1.11 and 5.83 (sec) respec-

tively which was higher than 0.21 (sec), 0.26 (sec) and 0.64 (sec) SOCP’s computational

time reported in [59]. However, LSE-SDP’s computational time still is in acceptable range

since the SDP separation is applying for every cycle in a cycle basis. In all of the tested

systems, our studies show that 2-4 iterations are enough to reach to an acceptable result.

4.7.2 The Effect of PMU Data on Static State Estimation

This section shows the effect of PMU data on static state estimation. Introducing PMU

to the power system, enhance the sampling rate and accuracy of the measurement system.

Not only, using PMU increase the sampling rate from one sample per every couple of min-

utes up to 60 sample per seconds, but also increases the accuracy of the measurement as

well. Traditional SCADA system data usually contains 5% error. By introducing PMU the

accuracy of the measurement increases to 1%.
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In order to show the effect of the PMU sampled data on the state estimation algorithm,

5% Gaussian noise added to to the active and reactive power injection and transmission line

flow for IEEE 14, 30 and 118 bus systems. The effect of SCADA system data compared

to the previous finding in which PMU measurement is used. The results clearly show that

high noise level in SCADA-based measurement affects estimation results significantly. The

comparison between SCADA measurement base estimator and PMU based estimator can be

found in Table 4.1.

Table 4.1. Comparison between SCADA-based and PMU-based SE

PMU based Measurement SCADA Based Measurement

Network RMS-VE RMS-AE
REL
-VE

REL
-AE

RMS
-VE

RMS
-AE

REL
-VE

REL
-AE

IEEE14 6.46× 10−4 5.93× 10−3 0.04 0.47 0.0036 0.042 2.01 2.29
IEEE30 1.07× 10−3 3.27× 10−3 0.03 0.12 0.0124 0.0066 4.53 10.55
IEEE118 6.00× 10−3 1.59× 10−3 0.08 0.3 0.0014 0.0064 0.14 0.53

4.7.3 Robustness of LSE-SDP Estimator

This section presents robustness evaluation of the LSE-SDP estimator and answers the

question of ”how robust is the algorithm for handling big networks”. In order to do that,

LSE-SDP estimator was applied to the 17 state-of-the-art NESTA v0.6.0 AC transmission

system test cases. Test cases start with the simple case of 3 buses to the complicated

one with 1345 buses under typical operating condition (TYP). For each case, two different

methods of estimation have been considered: i. Least Absolute value estimation (LAV) and

ii. Least Square Error estimation(LSE). The comparison between two methods shows that as

of expectation for most of the cases, LSE estimation dominated LAV estimator and reached

to the more accurate results. However, it can be argued that results are very close to each

other for both methods.
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For better evaluation of the algorithm results, Maximum Voltage Error (MVE) and Max-

imum Angle Error (MVA) was added to existing performance indexes. The results are dis-

played in Table 4.6.

4.7.4 Performance of the Co-Optimization Algorithm against Noise and Single

Bad Data

In order to compare the performance of the proposed method with LSE or LAV as

objective functions, bad data will be injected. a single meter is assumed to be corrupted. For

IEEE-14 bus system, bad data are added to the active and reactive power flow measurement

of the line (5,6) while for the IEEE-30 system, active and reactive power injection at bus

1 contain bad data measurements. Also, for New-England-39, IEEE-57 and IEEE-118 bus

systems, bad data randomly added to the active and reactive line flow measurements. In

all cases, the bad data are simulated by multiplying the true measurement by 1.2. The

measurement sets for IEEE-14 and IEEE-30 are adapted from [59], while for other cases, the

measurements of line flows are distributed randomly among transmission lines.

4.7.4.1 Sensitivity of the Detection Threshold τ1

In the case study on IEEE 14-bus system, we will inject data attack to a randomly

selected line’s real power and reactive power measurements. The attack vector obtained, and

the identified attack vector are shown in the following tables: Tables 4.2 and 4.3. Note that

there are total 122 measurements. The tables list only those meters with bad data greater

than 0.1% pu. The left two columns present the bad data and their meter indices sorted by

magnitudes. The right two columns present the identified bad data and the corresponding

meters sorted by magnitudes.

It can be found that the identification of the attack vector o is dependent on the assumed

threshold τ1 value or the assumed l1 norm of the attack vector. When the assumed value is
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Table 4.2. The real bad data vector versus the identified bad data vector o (τ1 = 1.34)

Bad Data vector ith meter Identified o ith meter
−0.0377 54 −0.0255 54
−0.0144 15 −0.0055 5
−0.0121 94 −0.0046 9
−0.0051 43 −0.0045 12
−0.0036 18 −0.0043 4
−0.0036 9 −0.0042 10
−0.0034 10 −0.0032 7
−0.0028 5 −0.0029 1
−0.0027 47 −0.0028 13
−0.0025 72 −0.0027 64
−0.0024 17 −0.0024 2
−0.0017 7 −0.0024 72
−0.0017 4 −0.0021 47
−0.0013 64 −0.0020 74
−0.0012 12 −0.0018 3
−0.0011 49 −0.0018 50
−0.0010 96 −0.0016 15

much greater than the real value, the detection algorithm can identify the meter with the

greatest attack value. The identified attack oi is of the same order of ai. When the assumed

value is smaller than the real value, the detection can identify the meter with the greatest

attack value as well. However, the identified value is not of the same order of the real value.

The above test shows that the proposed joint algorithm is successful in identification of

the meter with the worst attack. Further, the identified bad data is in the same order of the

real bad data injection our estimation of the threshold is reasonable.

4.7.4.2 Monte-Carlo Simulation

For meaningful comparison between the proposed algorithm (joint state estimation and

bad data detection ) and the traditional LNRT method, SDP cut-based method is imple-

mented for both LNRT-LAV and LNRT-LSE optimization. The performance metrics here

are the RMS of angle error (RMS-AE), RMS of voltage error (RMS-VE), and the average
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Table 4.3. The real bad data vector versus the identified bad data vector o (τ1 = 0.08)

Bad data vector ith meter Identified o ith meter
−0.1586 57 −0.0137 57
−0.0424 97 −0.0103 97
−0.0108 63 −0.0063 43
−0.0059 43 −0.0031 7
−0.0052 64 −0.0031 13
−0.0042 7 −0.0027 69
−0.0041 13 −0.0027 44
−0.0038 18 −0.0019 45
−0.0031 45 −0.0017 3
−0.0027 44 −0.0015 1
−0.0023 69 −0.0010 64
−0.0018 70 −0.0010 11
−0.0014 47 −0.0009 23
−0.0012 28 −0.0008 47
−0.0012 23 −0.0006 28
−0.0012 71 −0.0005 71
−0.0011 34 −0.0005 51
−0.0010 49 −0.0004 76

Mean-Square Error (MSE = ||xk − x̂k||2/N , where x̂k notates the estimated state variable

vector ) over 200 Monte Carlo runs. Table. 4.7 represents the result of the comparison.

Note that, both LNRT and co-optimization algorithm successfully identified bad data in all

cases. Also, the estimation result shows a slightly better performance of co-optimization

compare to LAV and LSE in the presence of single bad data. Fig 4.7 shows the MSE index

for each optimization algorithm over 200 Monte Carlo iterations. The computational time

for each optimization algorithms can be found in Table 4.4. Although the joint state estima-

tion and bad data detection algorithm seems a slightly slower in the Table, computational

time for Largest Normalized Residue calculation needs to be added to the LAV and LSE

optimizations time to make the comparison more meaningful.

For meaningful comparison between suggested algorithm and traditional LNRT method,

LSE based SDP cut implemented for both LNRT-LAV and LNRT-LSE optimization. The
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Table 4.4. Computational time for optimization algorithms

Cases LSE LAV Co-opt.
IEEE 14 0.49 0.51 0.55
IEEE 30 1.01 0.98 1.04
New-England 39 1.26 1.40 1.46
IEEE 57 2.24 2.41 2.50
IEEE 118 4.62 5.22 5.22

performance metrics here are average RMS˙angle and RMS˙voltage in (4.60) and (4.61)

together with average Mean-Square Error (MSE = ||xk − xtrk ||2/N) over 200 Monte Carlo

runs. Table. 4.7 represents the result of the comparison. Note that, both LNRT and co-

optimization algorithm successfully identified bad data for all cases. Also, the estimation

result shows a slightly better performance of co-optimization compare to LAV and LSE in the

presence of single bad data. Fig 4.7 shows the MSE index for each optimization algorithm

over 200 Monte Carlo iterations. The computational time for each optimization algorithms

can be found in Table 4.4. Although co-optimization algorithm seems slightly slower in the

Table, computational time for Largest Normalized Residue calculation needs to be added to

the LAV and LSE optimizations time to make the comparison more meaningful. Besides, in

our case studies for IEEE-14 and IEEE-30 bus systems, Jacobian matrix in LNRT algorithm

was very close to the singularity, which shows in some scenarios, singular Jacobian matrix

might happen.

4.7.5 Performance of the Proposed Algorithm Against Noise and Multiple Cor-

rupted Measurements

In LNRT algorithm a threshold is set to find the outlier measurement. If any corrupted

measurement is found, state estimation will be repeated after discarding this bad datum.

This procedure continues until no bad datum can be identified. Co-optimization method

uses the same procedure for identifying bad data and in fact, [77] claims that for single bad
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data, the co-optimization algorithm in (4.42) with τ0 = 1 are equivalent to the LNRT test.

However, the relationship of this method for multi bad data is unclear.

To further examine the performance of co-optimization algorithm compare to LNRT,

scenarios with multiple corrupted measurements are designed for testing the algorithms

on the IEEE and new-England case systems. The focus here is to observe the number

of corrupted measurements which could be identified by co-optimization algorithm in the

first iteration compare to the LNRT algorithm. Also, the effectiveness of the suggested

method for recovering from multiple bad data is compared to LNRT algorithms in this

section. Therefore, for each case study, the true measured value of the 10% of randomly

selected measurements are multiplied by 1.2 to generate multiple bad data and LNRT and

co-optimization algorithms are tested in the presence of those corrupted measurements.

Fig 4.8 represents the Mean Square Error of each algorithm for every iteration, while Fig

4.9 represents Percentage of corrupted measurements detection on the IEEE-30 bus system.

Also, Table 4.8 lists the performance results obtained by each algorithm for every iteration.

The results show a better performance of the co-optimization algorithm in the identification

of the corrupted measurements. In some cases, LNRT methods were not able to identify any

of the corrupted measurements, while the co-optimization algorithm found some of them.

These results suggest that, although the computational time of the co-optimization algorithm

is higher than LNRT, the number of times state estimation needed to rerun after discarding

the bad datum would significantly decrease and thus the overall computational time of state

estimation when the measurements contain multiple bad data could be decreased by using

proposed algorithm.

4.8 Conclusion

A joint AC network state estimation and bad data identification algorithm is introduced

in this chapter. The proposed algorithm uses the sparse matrix characteristic to identify bad
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data. Sparse matrix based identification has been implemented for linear state estimation in

the literature. Also, a new LSE base SDP cuts proposed in order to strengthen SCOP relax-

ation which can be weak for AC meshed power networks, due to the relaxation of feasibility

constraint. the proposed algorithm uses LSE criteria to create valid inequality constraints in

order to separate SOCP relaxation solution from SDP feasible region. The effectiveness of

the algorithm verified by comparing the results with non-convex state estimator with SOCP

based formulation. Also, the robustness of method tested on the 17 state-of-the-art NESTA

v0.6.0 AC transmission system test cases. Numerical results from case studies demonstrate

more accurate results in SOCP relaxed state estimation, successful implementation of the

algorithm for the simultaneous state estimation and bad data identification and improved

performance compared to largest normalized residue tests.
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Table 4.5. Comparison of state estimator performance with a conventional measurement set and noise

Network
SOCP LSE-SDP

RMS-VE RMS-AE REL-VE REL-AE RMS-VE RMS-AE REL-VE REL-AE
IEEE14 2.77× 10−3 2.67× 10−3 0.43 0.85 7.54× 10−5 6.83× 10−4 0.01 0.05
IEEE30 4.25× 10−3 4.39× 10−3 0.88 1.39 7.10× 10−4 1.90× 10−3 0.03 0.09
IEEE118 2.62× 10−3 1.91× 10−3 0.61 0.72 1.40× 10−3 1.50× 10−3 0.03 0.07
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Table 4.6. LSE-SDP state estimator performance for NESTA v0.6.0 test cases

Networks 
Least Absolute Value Estimation Least Square Error Estimation 

MVE MAE RMS-VE RMS-AE 
REL-
VE 

REL
_AE 

MVE MAE RMS-VE RMS-AE 
REL-
VE 

REL
_AE 

NESTA_3lmbd 2.08 × 10−4 1.10 × 10−3 1.20 × 10−4 8.50 × 10−4 0.00 0.14 2.30 × 10−4 9.00 × 10−4 1.35 × 10−4 7.30 × 10−4 0.03 0.13 
NESTA__4gs 2.30 × 10−4 4.32 × 10−4 1.62 × 10−4 3.58 × 10−4 0.02 0.05 1.61 × 10−4 3.23 × 10−4 1.08 × 10−4 2.72 × 10−4 0.01 0.04 
NESTA__5pjm 2.80 × 10−3 1.47 × 10−4 2.70 × 10−3 7.64 × 10−5 0.26 0.01 1.90 × 10−3 9.92 × 10−5 1.90 × 10−3 6.11 × 10−5 0.18 0.01 
NESTA__6ww 2.77 × 10−5 1.98 × 10−4 1.31 × 10−5 1.00 × 10−4 0.00 0.02 3.73 × 10−5 1.61 × 10−4 2.21 × 10−5 1.11 × 10−4 0.00 0.02 
NESTA__14ieee 3.43 × 10−4 1.97 × 10−4 1.11 × 10−4 1.01 × 10−4 0.03 0.02 1.84 × 10−4 3.51 × 10−4 7.99 × 10−5 2.22 × 10−4 0.02 0.05 
NESTA__24ieee 2.08 × 10−4 1.60 × 10−3 1.07 × 10−4 6.52 × 10−4 0.02 0.12 1.25 × 10−4 9.40 × 10−4 7.29 × 10−5 3.94 × 10−4 0.01 0.07 
NESTA__29edin 1.40 × 10−3 2.00 × 10−2 1.30 × 10−3 4.90 × 10−3 0.13 1.36 1.10 × 10−3 1.18 × 10−2 4.06 × 10−4 3.60 × 10−3 0.10 1.09 

NESTA__30as 1.88 × 10−4 7.89 × 10−4 6.47 × 10−5 5.92 × 10−4 0.02 0.1 1.01 × 10−4 2.41 × 10−4 5.27 × 10−5 7.95 × 10−5 0.01 0.03 

NESTA__30fsr 3.51 × 10−4 6.26 × 10−4 2.63 × 10−4 2.20 × 10−4 0.03 0.07 1.77 × 10−3 3.09 × 10−4 1.55 × 10−3 1.46 × 10−4 0.17 0.03 
NESTA__30ieee 3.17 × 10−4 4.95 × 10−4 1.39 × 10−4 3.43 × 10−4 0.03 0.06 1.65 × 10−4 6.67 × 10−4 9.56 × 10−5 3.28 × 10−4 0.02 0.09 
NESTA__39epri 3.72 × 10−4 1.20 × 10−3 2.31 × 10−4 6.07 × 10−4 0.04 0.11 3.23 × 10−4 1.20 × 10−3 2.06 × 10−4 3.94 × 10−4 0.03 0.11 
NESTA__57ieee 3.70 × 10−3 1.50 × 10−3 9.37 × 10−4 3.76 × 10−4 0.39 0.20 5.27 × 10−4 4.54 × 10−4 4.35 × 10−4 2.57 × 10−4 0.05 0.06 
NESTA__118ieee 3.55 × 10−4 9.64 × 10−4 1.07 × 10−4 3.53 × 10−4 0.04 0.16 1.83 × 10−3 1.25 × 10−3 3.50 × 10−4 4.87 × 10−4 0.18 0.25 
NESTA__162ieee 4.20 × 10−4 1.49 × 10−3 9.05 × 10−4 3.95 × 10−3 0.04 0.13 3.69 × 10−4 1.34 × 10−3 1.15 × 10−3 3.31 × 10−3 0.03 0.11 
NESTA__189edin 5.37 × 10−4 2.23 × 10−3 2.25 × 10−4 8.47 × 10−4 0.06 0.19 1.80 × 10−3 1.77 × 10−3 3.12 × 10−4 6.28 × 10−4 0.20 0.19 
NESTA__300ieee 4.80 × 10−3 1.98 × 10−3 6.98 × 10−4 5.10 × 10−4 0.47 0.19 6.60 × 10−4 1.44 × 10−3 1.29 × 10−4 3.70 × 10−4 0.07 0.14 

NESTA_1354pegase 8.34 × 10−3 1.36 × 10−3 4.00 × 10−4 2.88 × 10−4 0.78 0.21 1.07 × 10−3 1.41 × 10−3 2.79 × 10−4 2.36 × 10−4 0.10 0.14 
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Figure 4.7. Mean Square Error(MSE) for the optimization algorithms on the IEEE-14 bus system over 200 Monte Carlo
iterations in the presence of single bad data
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Table 4.7. Performance comparison between co-optimization algorithm and LNRT method in the presence of noise and
single bad data

Cases
LSE-LNRT LAV-LNRT Joint SE and bad data identification

MSE RMS-AE RMS-VE MSE RMS-AE RMS-VE MSE RMS-AE RMS-VE
IEEE 14 1.60× 10−3 0.0330 0.0034 4.21× 10−4 0.0079 0.0019 1.34× 10−4 0.0022 0.0020
IEEE 30 1.01× 10−2 0.0038 0.0017 6.30× 10−3 0.0043 0.0017 1.90× 10−3 0.0049 0.0015

New-England 39 1.35× 10−4 0.0047 0.0060 1.26× 10−4 0.0049 0.0042 1.21× 10−4 0.0042 0.0060
IEEE 57 1.35× 10−4 0.0047 0.0060 1.31× 10−4 0.0050 0.0043 9.68× 10−5 0.0042 0.0060
IEEE 118 6.54× 10−5 0.0092 0.0045 4.66× 10−5 0.0064 0.0033 5.09× 10−5 0.0062 0.0032
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Figure 4.8. Mean Square Error (MSE) for the optimization algorithms on the IEEE-14 bus system over 200 Monte Carlo
iterations in the presence of multiple bad data
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Figure 4.9. Percentage of corrupted measurements detection on the IEEE-30 bus system over 200 Monte Carlo iterations
in the presence of multiple bad data
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Table 4.8. Performance comparison between co-optimization algorithm and LNRT method in the presence of noise and
multiple bad data

Cases
LSE-LNRT LAV-LNRT Co-optimization

Detection MSE RMS-AE RMS-VE Detection MSE RMS-AE RMS-VE Detection MSE RMS-AE RMS-VE
IEEE 14 7.50% 8.90× 10−3 0.1925 0.0063 15.2% 4.50× 10−3 0.1040 0.0052 30.7% 5.30× 10−4 0.0084 0.0031
IEEE 30 0.00% 2.58× 10−4 0.0081 0.0023 0.00% 1.82× 10−4 0.0053 0.0034 8.95% 1.76× 10−4 0.0030 0.0027

New-England 39 13.9% 6.28× 10−4 0.0231 0.0107 26.5% 1.95× 10−4 0.0057 0.0062 32.5% 1.74× 10−4 0.0049 0.0087
IEEE 57 0.09% 1.75× 10−4 0.0106 0.0024 1.19% 1.78× 10−4 0.0030 0.0021 20.1% 7.31× 10−5 0.0028 0.0019
IEEE 118 0.98% 2.38× 10−4 0.0260 0.0050 5.17% 8.67× 10−5 0.0086 0.0037 23.33% 7.23× 10−5 0.0067 0.0036
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation conducted research in PMU based static and dynamic state estimation.

In dynamic state estimation, recursive algorithm i.e. Kalman Filter, is used to estimate

states and parameters of a synchronous generator using high rate PMU data. In static

state estimation, new robust co-optimization algorithm is introduced for simultaneous state

estimation and bad data detection. The dissertation brings incremental knowledge to the

power systems and smart grid research area. Such incremental benefit is evidenced by the

peer reviewed papers from this dissertation ( [25] is published, [63] and [73] are under review).

In particular, the dissertation research benefits are summarized in the following conclusions:

5.1.1 Dynamic State Estimation and Parameter Identification

For Dynamic state estimation, UKF is implemented for estimating states and parame-

ters of a low-order synchronous generator model with both primary and secondary frequency

control systems. The proposed method uses voltage magnitude and active power measure-

ments as the inputs while it uses voltage angle, reactive power and frequency as the outputs.

The inertia constant, damping coefficient, turbine-governor time constant, droop regulation

as well as secondary frequency integrator unit gain will all be estimated. Both simulation

data and real-world PMU data are used for case studies. In this part of the research, var-
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ious techniques are implemented for improving proposed UKF algorithm. The techniques

include:

• parameter conversion to increase parameter detection sensitivity.

• measurements interpolating to have a higher sampling rate to improve UKF conver-

gence.

In the validation step, a low-order dynamic simulation model is constructed with the es-

timated parameters. Input data are fed into the model to generate output data. The

generated output data will then be compared with the outputs from the measurements. The

case studies demonstrate the feasibility of the proposed UKF estimation approach for sys-

tem identification using PMU data. Through the proposed estimation method, a complex

generator model can be emulated using a low-order generator with frequency controls. The

case study on the real-world PMU data demonstrates the capability of the proposed UKF

on identifying an equivalent generator model.

5.1.2 Robust AC Network Static State Estimation

A joint AC network state estimation and bad data identification algorithm is introduced

in Chapter 4. The proposed algorithm uses the sparse matrix characteristic to identify bad

data. Sparse matrix based identification has been implemented for linear state estimation

in the literature. Also, a new LSE base SDP cuts proposed in order to strengthen SCOP

relaxation which can be weak for AC mesh power networks, due to the relaxation of feasibility

constraint. the proposed algorithm uses LSE criteria to create valid inequality constraints in

order to separate SOCP relaxation solution from SDP feasible region. The effectiveness of

the algorithm verified by comparing the results with non-convex state estimator with SOCP

based formulation. Also, the robustness of method tested on the 17 state-of-the-art NESTA

v0.6.0 AC transmission system test cases. Numerical results from case studies demonstrate

more accurate results in SOCP relaxed state estimation, successful implementation of the
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algorithm for the simultaneous state estimation and bad data identification and improved

performance compared to largest normalized residue tests.

5.2 Future Research

The future research to continue this dissertation work can be presented as follows.

5.2.1 Subset Selection For Generator Model Identification

5.2.1.1 Background

Accurate estimation of the dynamic behavior of the synchronous machine has a great

role in power system reliability analysis. Although nominal parameters of the machine are

known, over the time these values will change due to the mechanical reasons such as repairs

and aging. Such changing in the parameters of the synchronous machine can affect the

actual response of the generator to the dynamic events when it is compared to its expected

simulated response [92].

However, Research work shows that it’s not efficient to estimate all the parameters of

the generator. Some of the parameters are harder to estimate and can affect the accuracy

of the estimation results. Instead, the most important parameter which has the most effect

on the output of the system can be chosen to estimate. In this way, the estimation can be

implemented in a more efficient and accurate way and thus it can produce more accurate

results.

Section 3.5.3 of the dissertation, shows the difficulty of applying dynamic state estimation

for a real-world system. From research results, it can be understood that the accuracy of

the reactive power output and frequency estimation is not accurate enough. The reason can

be the big difference between the fifth order of the classic dynamic model of the generator

in compare to the high-order dynamic model of real-world generator. Besides, there are too
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many of unknown parameters which have been tried to estimate with the UKF algorithm.

Specifically, our practical experience shows that the estimation algorithm is highly sensitive

to the change in X ′d and H. Therefore, it seems investigation on the sensitivity of the output

to the parameters and use of subset selection algorithm can help improving the accuracy of

estimation algorithm. Thus, subset selection will be used in future steps to select the most

effective parameters on the output of the simplified model and then UKF will be used to

estimate those selected parameters.

There are two major algorithms have been reported in the literature for subset selection:

singular value decomposition method which was reported In [21] and [92] and trajectory

sensitivity analysis which was reported in [93] and [94]. In the first method the diagonal

elements of singular value decomposition of the sensitivity matrix show the most effective

parameters on the output of the system while, in the second approach, trajectory sensitivity

of the system to the change in the initial conditions and parameters will determine the most

important parameters for the output. Based on the results of implementing UKF for the

real-world system, there are still rooms for improvement in parameter estimation accuracy

in order to get the better identification of the simplified dynamic model of the generator.

5.2.1.2 Subset Selection Based on Singular Value Decomposition of Sensitivity

Matrix

Singular value decomposition (SVD) is the generalization of the eigen-decomposition of

the positive semi-definite matrix. For any m× n matrix M , SVD can be written as follows:

M = UΣV ∗ (5.1)

where U and V are m × m and n × n unitary matrix respectively, while σ is a diagonal

matrix with diagonal elements belong to the non-negative real number set. Based on SVD
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theory, the non-zero singular value of M which can be found on the diagonal elements of Σ,

represents the square roots of the eigenvalues of the MM∗ matrix. In order to explain the

usage of SVD theory on subset selection, consider generator dynamic equations in its state

space model. Therefore, we will have the following equations:


ẋ = Ax+Bu

Y = Cx+Du

(5.2)

Assume, M = {M1,M1, ...,Mn} are the parameters of the generator. The sensitivity

matrix of the system in 5.2 can be represented by the Jacobian matrix J of Y . Thus,

sensitivity matrix elements can be written as follows:

Jij =
∂Yi
∂Mj

(5.3)

If the measurement of system represented by Ŷ , LSE based parameters estimation, and

its optimal solution can be written as follows:
M̂ = min

∑N

k = 1

||Yk(M)− ŶK(M)||22

M̂ = M0 + (JTJ)−1JT r

(5.4)

where r represents error matrix associated with Y . By defining SVD of Jacobian matrix

J and substitute it into the LSE optimal solution, the following equation can be found for

estimated parameters M̂ :

J = UΣV T (5.5)

M̂ = M0 +
n∑

i = 1

oiv
T
i

σi
r (5.6)
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where oi and vi are the ith columns of U and V respectively, and σi is the ith singular values

of matrix J. Equation (5.6) clearly demonstrates the relationship between output error and

singular value of sensitivity matrix. Higher singular value shows a higher impact of the

parameters on the output of the system. Therefore, parameters with highest singular value

are the best candidate for parameter estimation.

5.2.1.3 Future Steps

In the future steps of the research, singular value decomposition of the sensitivity matrix

would be implemented for the real-world PMU data to find the best subset of parameters

for classic generator model. Then, parameter estimation would be carried out by using the

identified subset of parameters while the other parameters assumed to be known. The main

objective of this part of research should be to increase the accuracy of the simplified model.

Therefore, The remaining steps for this task are:

• Defining classic model of generator in state space and find out its relevant sensitivity

matrix

• Implement singular value decomposition algorithm for the sensitivity matrix on the

reduced real-world system and find the subset of parameters to be estimated

5.2.2 Distributed State Estimation with ADMM

5.2.2.1 Background

The main challenge of the SE algorithms is the limitation of the number of measurements

in power system. It is not possible to have a measurement on each bus or line of the power

networks. Therefore, implementing centralized real-time SE for large-scale power network

is practically infeasible due to the complexity of the system, limitation in the number of
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measurement, the huge amount of data and privacy policies in deregulated environment.

Therefore, Distributed Static State Estimation (DSSE) is introduced in the literature.

D-ES provide the ability to solve large-scale problem effectively by dividing the esti-

mation to the local control areas. In each control area, local operator will gather its own

measurement data and perform local state estimation with the exchange information of tie

line measurements with the other control areas. Difference D-SE algorithm tries to achieve

above objective and minimize the computational time as well as the amount of exchange

data between areas.

One of the most widely used and effective distributed optimization algorithms is alter-

native direction method of multipliers (ADMM) [95]. ADMM has the same principle as

dual decomposition, but the difference is an additional quadratic term in the dual variable

of updating equation. ADMM specifically introduced to add the distributed platform im-

plementation capability to the method of multiplier algorithm. In [96] and [97] ADMM

used to implement distributed state estimation. Therefore, one of our research objectives

is to implement new improved state estimation for distributed system by applying ADMM

algorithm.

5.2.2.2 Dual Decomposition

A general optimization problem can be defined as follows:

f ∗ = f(x∗) = min
x
f(x)

subject to Ax = b

(5.7)

where x∗ is its optimal solution. Based on lagrangian relaxation technique, one can try to

relaxes the minimization problem by transferring constraints to objective function as shown
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in (5.8).

L(x;λ) = f(x) + λT (Ax− b) (5.8)

Lagrange dual function, g(λ), is the greatest lower bound of L(x;λ) can be defined as

(5.9).

g∗ = max
λ

g(λ) = infx L(x;λ) (5.9)

Based on the duality theorem, solving dual problem will recover the optimal solution

for primal problem as well. Dual decomposition theory suggests that if function f can be

separated to the N functions such as f(x) = f1(x2) + f2(x2) + ... + fN(xN), then one can

separate its lagrangian relaxation as shown in (5.10) :

L(x;λ) =
N∑
i=1

Li(xi;λ)− λT b

Li(xi;λ) = fi(xi) + λTAixi (5.10)

Therefore, dual decomposition can be separated into the N optimization and solve iter-

atively as shown in (5.11) and (5.12):

xk+1
i := argminxi

Li(xi;λ
k), i = 1, ..., N (5.11)

λk+1 := λk + αk(
N∑
i=1

Aix
k+1
i − b) (5.12)

The dual decomposition algorithm can be solved in distributed parallelize way by first

considering known λk from the last step and then solve N parallelize optimization in (5.11) to
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find xk+1
i . Then update the dual variable in (5.12) to coordinate distributed optimizations in

order to converge to the same global dual value Λ. The problems of the dual decomposition

are often slow convergence and dependency to the lots of assumption [95].

5.2.2.3 Alternative Direction Method of Multiplier

The ADMM has been introduced to combined decomposability of dual decomposition

method with the great convergence rate of the method of multiplier [95]. Assume optimiza-

tion problem has the form of the following equation:

min f(x) + g(y)

s.t. Ax +By = c (5.13)

Then ADMM augmented Lagrangian function, and its related iterations can be written

as shown in (5.14)-(5.17) [95].

Lρ(x,y, λ) = f(x) + g(y) + λT (Ax +By − c) +
ρ

2
||Ax +By − c||22 (5.14)

xk+1 := argminx Lρ(x,y
k, λk) (5.15)

yk+1 := argminy Lρ(x
k+1,y, λk) (5.16)

λk+1 := λk + ρ(Axk+1 +Byk+1 − c) (5.17)

Traditionally there are three major methods for solving ADMM : Gauss-Seidel method,

Jacobian method, and Proximal Jacobian method. The difference between these meth-

ods comes from different approaches in parallelizing separated optimizations. Recently [98]

showed that Gauss-Seidel and jacobian method could suffer from convergence problem. In

Gauss-Seidel algorithm, each of distributed optimization blocks has to use an update from

their last block and therefore they cannot be solved in parallelized manner. Also [98] shows
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that Gauss-Seidel method may not be converged for large-scale systems. With the same

approach, it is proven that the jacobian method is more likely to diverge than the Gauss-

Seidel method due to its parallelized solving of optimization blocks. Therefore, the proximal

jacobian algorithm has been proposed in [98] to solve the ADMM with the good convergence

rate and guarantees its convergence to the global solution. Thus, in the future research,

ADMM will be applied to the improved SE algorithm while proximal jacobian method will

be used to solve it. Algorithm 8 shows proximal jacobian solver algorithm for ADMM based

optimization [95].

Algorithm 8 Proximal Jacobian solver for ADMM

Initialize x0
i and λ0.

for k=0,1,... do.
Update xk+1

i in parallel by:

xk+1
i = argminx fi(xi) + ρ

2
||Aixi +

∑
j 6=iAjx

k
j − c+ λk

ρ
||22+1

2
||xi − xki ||2pi

Update λk+1 = λk − γρ(
∑N

i=1 Aix
k+1
i − c)

S.t.
0 ≤ γ ≤ 2
Pi � ρ( N

2−γ − 1)ATi Ai
end for

5.2.2.4 Future Steps

In the future research, these steps have to be accomplished:

• Formulate improved state estimator with ADMM for distributed platform

• Implement distributed state estimator for IEEE case systems.

• Evaluate effectiveness of new improved estimator with comparing it to the existing

estimator in literature
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APPENDIX A

LIST OF ABBREVIATIONS

µG Micro-Grid
AC Alternative Current
ADMM Alternating Direction Method of multipliers
DC Direct Current
DER Distributed Energy Resources
DSE Dynamic State Estimation
SSE Static State Estimation
EPRI Electric Power Research Institute
IEEE Institute of Electrical and Electronics Engineers
IT Information Technology
LNRT Largest Normalize Residue Test
OPF Optimal Power Flow
PMU Phasor Measurement Unit
SDP Semi-Definite Programming
SE State Estimation
SOCP Second Order Conic Programming
SSE Static State Estimation
WAMC Wide Area Measurement and Control
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APPENDIX B

MATLAB CODE FOR JOINT OPTIMIZATION ALGORITHM

%% Define the system

mpc=nesta_case14_ieee;

%% Calulate System Matrices

[Ybus, Yf, Yt] = makeYbus(mpc);

%% Creat initial conditions and measurement matrix

Rp=ones(Nline,1);

Ip=zeros(Nline,1);

u(:,1)=ones(Nbus,1);

R(:,1)=ones(Nline,1);

I(:,1)=zeros(Nline,1);

delta(:,1)=zeros(Nbus,1);

Psch=(Pg-Pd);

Qsch=(Qg-Qd);

%% Solve convex SCOP based SE to find initial guess for SE problem

SE_coop_coop;

%% Run algorithm for number of iterations
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for i=1:4

%% Solve joint algorithm and find the optimal solution for SOCP based SE

cvx_begin

variables R2(20,1) I2(20,1) u2(14,1) e(122,1) O(122,1)

minimize norm(e,2)+Lambda*norm(O,1)

subject to

for it=1:Nbus

G(it,it)*u(it)+sum(G(w,it).*R(r)-B(w,it).*I(r))+e(it)-O(it)==P(it);

-B(it,it)*u(it)-sum(B(w,it).*R(r)+G(w,it).*I(r))+e(14+it)-O(14+it)==Q(it);

end

for k=1:Nline

norm([R(k),I(k),(u(L(k,1))-u(L(k,2)))/2],2) <= (u(L(k,1))+u(L(k,2)))/2;

g(k).*u(L(k,1))-g(k).*R(k)+b(k).*I(k14)+e(42+k)-O(42+k)==PFlow(k,1);

-(b(k)+b_sh(k)/2).*u(L(k,1))

+b(k).*R(k)+g(k).*I(k)+e(62+k14)-O(62+k)==Qflow(k,1);

end

%% Separate cutting planes by LSE-based SDP seperation

[alpha_i{1,it},aa_i{1,it},Z_i2{1,it}]=Cut_SDP(L,Ip,Rp,up,bus);

for kk3=1:iii2
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for jj3=1:size(alpha_i2{1,kk3},2)

alpha_i2{1,kk3}{1,jj3}*(Z2-Z_i2{1,kk3}{1,jj3}) <= 0;

end

end

cvx_end

end
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